This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

Kettering MO, 2014

[b]p1.[/b] Solve the equation $x^2 - x - cos y+1.25 =0$. [b]p2.[/b] Solve the inequality: $\left| \frac{x - 2}{x - 3}\right| \le x$ [b]p3.[/b] Bilbo and Dwalin are seated at a round table of radius $R$. Bilbo places a coin of radius $r$ at the center of the table, then Dwalin places a second coin as near to the table’s center as possible without overlapping the first coin. The process continues with additional coins being placed as near as possible to the center of the table and in contact with as many coins as possible without overlap. The person who places the last coin entirely on the table (no overhang) wins the game. Assume that $R/r$ is an integer. (a) Who wins, Bilbo or Dawalin? Please justify your answer. (b) How many coins are on the table when the game ends? [b]p4.[/b] In the center of a square field is an orc. Four elf guards are on the vertices of that square. The orc can run in the field, the elves only along the sides of the square. Elves run $\$1.5$ times faster than the orc. The orc can kill one elf but cannot fight two of them at the same time. Prove that elves can keep the orc from escaping from the field. [b]p5.[/b] Nine straight roads cross the Mirkwood which is shaped like a square, with an area of $120$ square miles. Each road intersects two opposite sides of the square and divides the Mirkwood into two quadrilaterals of areas $40$ and $80$ square miles. Prove that there exists a point in the Mirkwood which is an intersection of at least three roads. PS. You should use hide for answers.

2023 SG Originals, Q6

$\mathbb{Z}[x]$ represents the set of all polynomials with integer coefficients. Find all functions $f:\mathbb{Z}[x]\rightarrow \mathbb{Z}[x]$ such that for any 2 polynomials $P,Q$ with integer coefficients and integer $r$, the following statement is true. \[P(r)\mid Q(r) \iff f(P)(r)\mid f(Q)(r).\] (We define $a|b$ if and only if $b=za$ for some integer $z$. In particular, $0|0$.) [i]Proposed by the4seasons.[/i]

2003 Romania Team Selection Test, 7

Find all integers $a,b,m,n$, with $m>n>1$, for which the polynomial $f(X)=X^n+aX+b$ divides the polynomial $g(X)=X^m+aX+b$. [i]Laurentiu Panaitopol[/i]

2004 CentroAmerican, 2

Tags: algebra
Define the sequence $(a_n)$ as follows: $a_0=a_1=1$ and for $k\ge 2$, $a_k=a_{k-1}+a_{k-2}+1$. Determine how many integers between $1$ and $2004$ inclusive can be expressed as $a_m+a_n$ with $m$ and $n$ positive integers and $m\not= n$.

2014 China Western Mathematical Olympiad, 8

Tags: algebra
Given a real number $q$, $1 < q < 2$ define a sequence $ \{x_n\}$ as follows: for any positive integer $n$, let \[x_n=a_0+a_1 \cdot 2+ a_2 \cdot 2^2 + \cdots + a_k \cdot 2^k \qquad (a_i \in \{0,1\}, i = 0,1, \cdots m k)\] be its binary representation, define \[x_k= a_0 +a_1 \cdot q + a_2 \cdot q^2 + \cdots +a_k \cdot q^k.\] Prove that for any positive integer $n$, there exists a positive integer $m$ such that $x_n < x_m \leq x_n+1$.

1994 China National Olympiad, 3

Find all functions $f:[1,\infty )\rightarrow [1,\infty)$ satisfying the following conditions: (1) $f(x)\le 2(x+1)$; (2) $f(x+1)=\dfrac{1}{x}[(f(x))^2-1]$ .

1968 IMO Shortlist, 12

If $a$ and $b$ are arbitrary positive real numbers and $m$ an integer, prove that \[\Bigr( 1+\frac ab \Bigl)^m +\Bigr( 1+\frac ba \Bigl)^m \geq 2^{m+1}.\]

LMT Team Rounds 2021+, B10

Tags: algebra
Let $f (x)$ be a function mapping real numbers to real numbers. Given that $f (f (x)) =\frac{1}{3x}$, and $f (2) =\frac19$, find $ f\left(\frac{1}{6}\right)$. [i]Proposed by Zachary Perry[/i]

2008 Ukraine Team Selection Test, 2

There is a row that consists of digits from $ 0$ to $ 9$ and Ukrainian letters (there are $ 33$ of them) with following properties: there aren’t two distinct digits or letters $ a_i$, $ a_j$ such that $ a_i > a_j$ and $ i < j$ (if $ a_i$, $ a_j$ are letters $ a_i > a_j$ means that $ a_i$ has greater then $ a_j$ position in alphabet) and there aren’t two equal consecutive symbols or two equal symbols having exactly one symbol between them. Find the greatest possible number of symbols in such row.

VI Soros Olympiad 1999 - 2000 (Russia), 10.1

Find all real functions of a real numbers, such that for any $x$, $y$ and $z$ holds the equality $$ f(x)f(y)f(z)-f(xyz)=xy+yz+xz+x+y+z.$$

2010 District Olympiad, 1

a) Factorize $xy - x - y + 1$. b) Prove that if integers $a$ and $b$ satisfy $ |a + b| > |1 + ab|$, then $ab = 0$.

2023 Romania National Olympiad, 1

Solve the following equation for real values of $x$: \[ 2 \left( 5^x + 6^x - 3^x \right) = 7^x + 9^x. \]

2009 Ukraine National Mathematical Olympiad, 4

Find all functions $f : \mathbb R \to \mathbb R$ such that \[f\left(x+xy+f(y)\right)= \left( f(x)+\frac 12 \right) \left( f(y)+\frac 12 \right) \qquad \forall x,y \in \mathbb R.\]

1990 Greece Junior Math Olympiad, 4

Tags: trinomial , algebra
For which real values of $m$ does the equation $x^2-\frac{m^2+1}{m -1}x+2m+2=0$ has root $x=-1$?

Math Hour Olympiad, Grades 5-7, 2019.67

[u]Round 1[/u] [b]p1.[/b] Three two-digit numbers are written on a board. One starts with $5$, another with $6$, and the last one with $7$. Annie added the first and the second numbers; Benny added the second and the third numbers; Denny added the third and the first numbers. Could it be that one of these sums is equal to $148$, and the two other sums are three-digit numbers that both start with $12$? [b]p2.[/b] Three rocks, three seashells, and one pearl are placed in identical boxes on a circular plate in the order shown. The lids of the boxes are then closed, and the plate is secretly rotated. You can open one box at a time. What is the smallest number of boxes you need to open to know where the pearl is, no matter how the plate was rotated? [img]https://cdn.artofproblemsolving.com/attachments/0/2/6bb3a2a27f417a84ab9a64100b90b8768f7978.png[/img] [b]p3.[/b] Two detectives, Holmes and Watson, are hunting the thief Raffles in a library, which has the floorplan exactly as shown in the diagram. Holmes and Watson start from the center room marked $D$. Show that no matter where Raffles is or how he moves, Holmes and Watson can find him. Holmes and Watson do not need to stay together. A detective sees Raffles only if they are in the same room. A detective cannot stand in a doorway to see two rooms at the same time. [img]https://cdn.artofproblemsolving.com/attachments/c/1/6812f615e60a36aea922f145a1ffc470d0f1bc.png[/img] [b]p4.[/b] A museum has a $4\times 4$ grid of rooms. Every two rooms that share a wall are connected by a door. Each room contains some paintings. The total number of paintings along any path of $7$ rooms from the lower left to the upper right room is always the same. Furthermore, the total number of paintings along any path of $7$ rooms from the lower right to the upper left room is always the same. The guide states that the museum has exactly $500$ paintings. Show that the guide is mistaken. [img]https://cdn.artofproblemsolving.com/attachments/4/6/bf0185e142cd3f653d4a9c0882d818c55c64e4.png[/img] [b]p5.[/b] The numbers $1–14$ are placed around a circle in some order. You can swap two neighbors if they differ by more than $1$. Is it always possible to rearrange the numbers using swaps so they are ordered clockwise from $1$ to $14$? [u]Round 2[/u] [b]p6.[/b] A triangulation of a regular polygon is a way of drawing line segments between its vertices so that no two segments cross, and the interior of the polygon is divided into triangles. A flip move erases a line segment between two triangles, creating a quadrilateral, and replaces it with the opposite diagonal through that quadrilateral. This results in a new triangulation. [img]https://cdn.artofproblemsolving.com/attachments/a/a/657a7cf2382bab4d03046075c6e128374c72d4.png[/img] Given any two triangulations of a polygon, is it always possible to find a sequence of flip moves that transforms the first one into the second one? [img]https://cdn.artofproblemsolving.com/attachments/0/9/d09a3be9a01610ffc85010d2ac2f5b93fab46a.png[/img] [b]p7.[/b] Is it possible to place the numbers from $1$ to $121$ in an $11\times 11$ table so that numbers that differ by $1$ are in horizontally or vertically adjacent cells and all the perfect squares $(1, 4, 9,..., 121)$ are in one column? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2023 Costa Rica - Final Round, 3.1

Let $\mathbb Z^{\geq 0}$ be the set of all non-negative integers. Consider a function $f:\mathbb Z^{\geq 0} \to \mathbb Z^{\geq 0}$ such that $f(0)=1$ and $f(1)=1$, and that for any integer $n \geq 1$, we have \[f(n + 1)f(n - 1) = nf(n)f(n - 1) + (f(n))^2.\] Determine the value of $f(2023)/f(2022)$.

1959 AMC 12/AHSME, 5

Tags: algebra , exponent
The value of $\left(256\right)^{.16}\left(256\right)^{.09}$ is: $ \textbf{(A)}\ 4 \qquad\textbf{(B)}\ 16\qquad\textbf{(C)}\ 64\qquad\textbf{(D)}\ 256.25\qquad\textbf{(E)}\ -16$

1983 All Soviet Union Mathematical Olympiad, 352

Find all the solutions of the system $$\begin{cases} y^2 = x^3 - 3x^2 + 2x \\ x^2 = y^3 - 3y^2 + 2y \end{cases}$$

1952 Moscow Mathematical Olympiad, 211

Tags: algebra , minimum , time , walk
Two men, $A$ and $B$, set out from town $M$ to town $N$, which is $15$ km away. Their walking speed is $6$ km/hr. They also have a bicycle which they can ride at $15$ km/hr. Both $A$ and $B$ start simultaneously, $A$ walking and $B$ riding a bicycle until $B$ meets a pedestrian girl, $C$, going from $N$ to $M$. Then $B$ lends his bicycle to $C$ and proceeds on foot; $C$ rides the bicycle until she meets $A$ and gives $A$ the bicycle which $A$ rides until he reaches $N$. The speed of $C$ is the same as that of $A$ and $B$. The time spent by $A$ and $B$ on their trip is measured from the moment they started from $M$ until the arrival of the last of them at $N$. a) When should the girl $C$ leave $N$ for $A$ and $B$ to arrive simultaneously in $N$? b) When should $C$ leave $N$ to minimize this time?

1989 Bundeswettbewerb Mathematik, 1

Determine the polynomial $$f(x) = x^k + a_{k-1} x^{k-1}+\cdots +a_1 x +a_0 $$ of smallest degree such that $a_i \in \{-1,0,1\}$ for $0\leq i \leq k-1$ and $f(n)$ is divisible by $30$ for all positive integers $n$.

2015 Dutch BxMO/EGMO TST, 2

Given are positive integers $r$ and $k$ and an infi nite sequence of positive integers $a_1 \le a_2 \le ...$ such that $\frac{r}{a_r}= k + 1$. Prove that there is a $t$ satisfying $\frac{t}{a_t}=k$.

1995 All-Russian Olympiad, 8

Let $P(x)$ and $Q(x)$ be monic polynomials. Prove that the sum of the squares of the coeficients of the polynomial $P(x)Q(x)$ is not smaller than the sum of the squares of the free coefficients of $P(x)$ and $Q(x)$. [i]A. Galochkin, O. Ljashko[/i]

2024 Belarusian National Olympiad, 9.6

Tags: algebra
Given pairs $(a_1,b_1)$, $(a_2,b_2),\ldots, (a_n,b_n)$ of non-negative real numbers such that for any real $x$ and $y$ the equality $$\sqrt{a_1x^2+b_1y^2}+\sqrt{a_2x^2+b_2y^2}+\ldots+\sqrt{a_nx^2+b_ny^2}=\sqrt{x^2+y^2}$$ Prove that $a_1=b_1,a_2=b_2,\ldots$,$a_n=b_n$ [i]A. Vaidzelevich[/i]

1997 Belarusian National Olympiad, 2

Suppose that a function $f : R^+ \to R^+$ satisfies $$f(f(x))+x = f(2x).$$ Prove that $f(x) \ge x$ for all $x >0$

1978 IMO Longlists, 28

Let $c, s$ be real functions defined on $\mathbb{R}\setminus\{0\}$ that are nonconstant on any interval and satisfy \[c\left(\frac{x}{y}\right)= c(x)c(y) - s(x)s(y)\text{ for any }x \neq 0, y \neq 0\] Prove that: $(a) c\left(\frac{1}{x}\right) = c(x), s\left(\frac{1}{x}\right) = -s(x)$ for any $x = 0$, and also $c(1) = 1, s(1) = s(-1) = 0$; $(b) c$ and $s$ are either both even or both odd functions (a function $f$ is even if $f(x) = f(-x)$ for all $x$, and odd if $f(x) = -f(-x)$ for all $x$). Find functions $c, s$ that also satisfy $c(x) + s(x) = x^n$ for all $x$, where $n$ is a given positive integer.