Found problems: 15925
2012 China Team Selection Test, 3
Find the smallest possible value of a real number $c$ such that for any $2012$-degree monic polynomial
\[P(x)=x^{2012}+a_{2011}x^{2011}+\ldots+a_1x+a_0\]
with real coefficients, we can obtain a new polynomial $Q(x)$ by multiplying some of its coefficients by $-1$ such that every root $z$ of $Q(x)$ satisfies the inequality
\[ \left\lvert \operatorname{Im} z \right\rvert \le c \left\lvert \operatorname{Re} z \right\rvert. \]
1999 Estonia National Olympiad, 2
It is known that the quadratic equations $x^2 + 6x + 4a = 0$ and $x^2 + 2bx - 12 = 0$ have a common solution. Prove that then there is a common solution to the quadratic equations $x^2 + 9x + 9a = 0$ and $x^2 + 3bx - 27 = 0$.
2020 Bulgaria Team Selection Test, 2
Given two odd natural numbers $ a,b$ prove that for each $ n\in\mathbb{N}$ there exists $ m\in\mathbb{N}$ such that either $ a^mb^2-1$ or $ b^ma^2-1$ is multiple of $ 2^n.$
2018 JBMO Shortlist, A2
Find the maximum positive integer $k$ such that for any positive integers $m,n$ such that $m^3+n^3>(m+n)^2$, we have
$$m^3+n^3\geq (m+n)^2+k$$
[i] Proposed by Dorlir Ahmeti, Albania[/i]
2011 Balkan MO Shortlist, A1
Given real numbers $x,y,z$ such that $x+y+z=0$, show that
\[\dfrac{x(x+2)}{2x^2+1}+\dfrac{y(y+2)}{2y^2+1}+\dfrac{z(z+2)}{2z^2+1}\ge 0\]
When does equality hold?
2018 Latvia Baltic Way TST, P1
Let $p_1,p_2,...,p_n$ be $n\ge 2$ fixed positive real numbers. Let $x_1,x_2,...,x_n$ be nonnegative real numbers such that $$x_1p_1+x_2p_2+...+x_np_n=1.$$
Determine the [i](a)[/i] maximal; [i](b)[/i] minimal possible value of $x_1^2+x_2^2+...+x_n^2$.
2019 Iran MO (3rd Round), 3
Let $a,b,c$ be non-zero distinct real numbers so that there exist functions $f,g:\mathbb{R}^{+} \to \mathbb{R}$ so that:
$af(xy)+bf(\frac{x}{y})=cf(x)+g(y)$
For all positive real $x$ and large enough $y$.
Prove that there exists a function $h:\mathbb{R}^{+} \to \mathbb{R}$ so that:
$f(xy)+f(\frac{x}{y})=2f(x)+h(y)$
For all positive real $x$ and large enough $y$.
2005 District Olympiad, 4
Let $n\geq 3$ be an integer. Find the number of functions $f:\{1,2,\ldots,n\}\to\{1,2,\ldots,n\}$ such that
\[ f(f(k)) = f^3(k) - 6f^2(k) + 12f(k) - 6 , \ \textrm{ for all } k \geq 1 . \]
LMT Guts Rounds, 2017
[u]Round 9[/u]
[b]p25.[/b] Let $S$ be the set of the first $2017$ positive integers. Find the number of elements $n \in S$ such that $\sum^n_{i=1} \left\lfloor \frac{n}{i} \right\rfloor$ is even.
[b]p26.[/b] Let $\{x_n\}_{n \ge 0}$ be a sequence with $x_0 = 0$,$x_1 = \frac{1}{20}$ ,$x_2 = \frac{1}{17}$ ,$x_3 = \frac{1}{10}$ , and $x_n = \frac12 ((x_{n-2} +x_{n-4})$ for $n\ge 4$. Compute $$ \left\lfloor \frac{1}{x_{2017!} -x_{2017!-1}} \right\rfloor.$$
[b]p27.[/b] Let $ABCDE$ be be a cyclic pentagon. Given that $\angle CEB = 17^o$, find $\angle CDE + \angle EAB$, in degrees.
[u]Round 10[/u]
[b]p28.[/b] Let $S = \{1,2,4, ... ,2^{2016},2^{2017}\}$. For each $0 \le i \le 2017$, let $x_i$ be chosen uniformly at random from the subset of $S$ consisting of the divisors of $2^i$ . What is the expected number of distinct values in the set $\{x_0,x_1,x_2,... ,x_{2016},x_{2017}\}$?
[b]p29.[/b] For positive real numbers $a$ and $b$, the points $(a, 0)$, $(20,17)$ and $(0,b)$ are collinear. Find the minimum possible value of $a+b$.
[b]p30.[/b] Find the sum of the distinct prime factors of $2^{36}-1$.
[u]Round 11[/u]
[b]p31.[/b] There exist two angle bisectors of the lines $y = 20x$ and $y = 17x$ with slopes $m_1$ and $m_2$. Find the unordered pair $(m_1,m_2)$.
[b]p32.[/b] Triangle 4ABC has sidelengths $AB = 13$, $BC = 14$, $C A =15$ and orthocenter $H$. Let $\Omega_1$ be the circle through $B$ and $H$, tangent to $BC$, and let $\Omega_2$ be the circle through $C$ and $H$, tangent to $BC$. Finally, let $R \ne H$ denote the second intersection of $\Omega_1$ and $\Omega_2$. Find the length $AR$.
[b]p33.[/b] For a positive integer $n$, let $S_n = \{1,2,3, ...,n\}$ be the set of positive integers less than or equal to $n$. Additionally, let $$f (n) = |\{x \in S_n : x^{2017}\equiv x \,\, (mod \,\, n)\}|.$$ Find $f (2016)- f (2015)+ f (2014)- f (2013)$.
[u]Round 12[/u]
[b]p34. [/b] Estimate the value of $\sum^{2017}_{n=1} \phi (n)$, where $\phi (n)$ is the number of numbers less than or equal $n$ that are relatively prime to n. If your estimate is $E$ and the correct answer is $A$, your score for this problem will be max $\max \left(0,\lfloor 15 - 75 \frac{|A-E|}{A} \rceil \right).$
[b]p35.[/b] An up-down permutation of order $n$ is a permutation $\sigma$ of $(1,2,3, ..., n)$ such that $\sigma(i ) <\sigma (i +1)$ if and only if $i$ is odd. Denote by $P_n$ the number of up-down permutations of order $n$. Estimate the value of $P_{20} +P_{17}$. If your estimate is $E$ and the correct answer is $A$, your score for this problem will be $\max \left(0, 16 -\lceil \max \left(\frac{E}{A}, 2- \frac{E}{A}\right) \rceil \right).$
[b]p36.[/b] For positive integers $n$, superfactorial of $n$, denoted $n\$ $, is defined as the product of the first $n$ factorials. In other words, we have $n\$ = \prod^n_{i=1}(i !)$. Estimate the number of digits in the product $(20\$)\cdot (17\$)$. If your estimate is $E$ and the correct answer is $A$, your score for this problem will be $\max \left(0, \lfloor 15 -\frac12 |A-E| \rfloor \right).$
PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h3158491p28715220]here [/url] and 5-8 [url=https://artofproblemsolving.com/community/c3h3158514p28715373]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2012 Turkmenistan National Math Olympiad, 2
If the polynomial $P(x)=ax^2+bx+c$ takes value $0$ for three different values of $x$, then prove the polynomial $P(x)$ takes value $0$ for all $x$.
VI Soros Olympiad 1999 - 2000 (Russia), 10.5
Prove that the polynomial $x^{1999}+x^{1998}+...+x^3+x^2+ax+b$ for any real values of the coefficients $a>b>0$ does not have an integer root.
2022 May Olympiad, 1
This morning, Emi dropped the watch and from there it started to move more slowly. When, according to the clock, $2$ minutes have passed, in reality it has already been $3$. Now it is $6:25$ pm and the clock says it is $3:30$ pm. What time did Emi drop the watch?
1936 Moscow Mathematical Olympiad, 027
Solve the system $\begin{cases} x+y=a \\
x^5 +y^5 = b^5
\end{cases}$
2000 Rioplatense Mathematical Olympiad, Level 3, 3
Let $n>1$ be an integer. For each numbers $(x_1, x_2,\dots, x_n)$ with $x_1^2+x_2^2+x_3^2+\dots +x_n^2=1$, denote
$m=\min\{|x_i-x_j|, 0<i<j<n+1\}$
Find the maximum value of $m$.
1979 Spain Mathematical Olympiad, 4
If $z_1$ , $z_2$ are the roots of the equation with real coefficients $z^2+az+b = 0$, prove that $ z^n_1 + z^n_2$ is a real number for any natural value of $n$. If particular of the equation $z^2 - 2z + 2 = 0$, express, as a function of $n$, the said sum.
1998 Kurschak Competition, 2
Prove that for every positive integer $n$, there exists a polynomial with integer coefficients whose values at points $1,2,\dots,n$ are pairwise different powers of $2$.
2025 India STEMS Category A, 2
Let $\mathcal{P}$ be the set of all polynomials with coefficients in $\{0, 1\}$. Suppose $a, b$ are non-zero integers such that for every $f \in \mathcal{P}$ with $f(a)\neq 0$, we have $f(a) \mid f(b)$. Prove that $a=b$.
[i]Proposed by Shashank Ingalagavi and Krutarth Shah[/i]
2020 Olympic Revenge, 2
For a positive integer $n$, we say an $n$-[i]shuffling[/i] is a bijection $\sigma: \{1,2, \dots , n\} \rightarrow \{1,2, \dots , n\}$ such that there exist exactly two elements $i$ of $\{1,2, \dots , n\}$ such that $\sigma(i) \neq i$.
Fix some three pairwise distinct $n$-shufflings $\sigma_1,\sigma_2,\sigma_3$. Let $q$ be any prime, and let $\mathbb{F}_q$ be the integers modulo $q$. Consider all functions $f:(\mathbb{F}_q^n)^n\to\mathbb{F}_q$ that satisfy, for all integers $i$ with $1 \leq i \leq n$ and all $x_1,\ldots x_{i-1},x_{i+1}, \dots ,x_n, y, z\in\mathbb{F}_q^n$, \[f(x_1, \ldots ,x_{i-1}, y, x_{i+1}, \ldots , x_n) +f(x_1, \ldots ,x_{i-1}, z, x_{i+1}, \ldots , x_n) = f(x_1, \ldots ,x_{i-1}, y+z, x_{i+1}, \ldots , x_n), \] and that satisfy, for all $x_1,\ldots,x_n\in\mathbb{F}_q^n$ and all $\sigma\in\{\sigma_1,\sigma_2,\sigma_3\}$, \[f(x_1,\ldots,x_n)=-f(x_{\sigma(1)},\ldots,x_{\sigma(n)}).\]
For a given tuple $(x_1,\ldots,x_n)\in(\mathbb{F}_q^n)^n$, let $g(x_1,\ldots,x_n)$ be the number of different values of $f(x_1,\ldots,x_n)$ over all possible functions $f$ satisfying the above conditions.
Pick $(x_1,\ldots,x_n)\in(\mathbb{F}_q^n)^n$ uniformly at random, and let $\varepsilon(q,\sigma_1,\sigma_2,\sigma_3)$ be the expected value of $g(x_1,\ldots,x_n)$. Finally, let \[\kappa(\sigma_1,\sigma_2,\sigma_3)=-\lim_{q \to \infty}\log_q\left(-\ln\left(\frac{\varepsilon(q,\sigma_1,\sigma_2,\sigma_3)-1}{q-1}\right)\right).\]
Pick three pairwise distinct $n$-shufflings $\sigma_1,\sigma_2,\sigma_3$ uniformly at random from the set of all $n$-shufflings. Let $\pi(n)$ denote the expected value of $\kappa(\sigma_1,\sigma_2,\sigma_3)$. Suppose that $p(x)$ and $q(x)$ are polynomials with real coefficients such that $q(-3) \neq 0$ and such that $\pi(n)=\frac{p(n)}{q(n)}$ for infinitely many positive integers $n$. Compute $\frac{p\left(-3\right)}{q\left(-3\right)}$.
2009 CentroAmerican, 1
Let $ P$ be the product of all non-zero digits of the positive integer $ n$. For example, $ P(4) \equal{} 4$, $ P(50) \equal{} 5$, $ P(123) \equal{} 6$, $ P(2009) \equal{} 18$.
Find the value of the sum: P(1) + P(2) + ... + P(2008) + P(2009).
1966 Swedish Mathematical Competition, 2
$a_1 + a_2 + ... + a_n = 0$, for some $k$ we have $a_j \le 0$ for $j \le k$ and $a_j \ge 0$ for $j > k$. If ai are not all $0$, show that $a_1 + 2a_2 + 3a_3 + ... + na_n > 0$.
1999 Moldova Team Selection Test, 8
Find a function $f: \mathbb N \to \mathbb N$ such that for all positive integers $n$, \[ f(f(n))\equal{}n^2.\]
2005 Korea Junior Math Olympiad, 3
For a positive integer $K$, define a sequence, $\{a_n\}$, as following: $a_1 = K$ and
$a_{n+1} =a_n -1$ if $a_n$ is even
$a_{n+1} =\frac{a_n - 1}{2}$ if $a_n$ is odd , for all $n \ge 1$.
Find the smallest value of $K$, which makes $a_{2005}$ the first term equal to $0$.
2024 District Olympiad, P2
Consider the sequence $(a_n)_{n\geqslant 1}$ defined by $a_1=1/2$ and $2n\cdot a_{n+1}=(n+1)a_n.$[list=a]
[*]Determine the general formula for $a_n.$
[*]Let $b_n=a_1+a_2+\cdots+a_n.$ Prove that $\{b_n\}-\{b_{n+1}\}\neq \{b_{n+1}\}-\{b_{n+2}\}.$
[/list]
2015 Caucasus Mathematical Olympiad, 2
Let $a$ and $b$ be arbitrary distinct numbers.
Prove that the equation $(x +a) (x+b)=2x+a+b$ has two different roots.
1994 Czech And Slovak Olympiad IIIA, 4
Let $a_1,a_2,...$ be a sequence of natural numbers such that for each $n$, the product $(a_n - 1)(a_n- 2)...(a_n - n^2)$ is a positive integral multiple of $n^{n^2-1}$. Prove that for any finite set $P$ of prime numbers the following inequality holds:
$$\sum_{p\in P}\frac{1}{\log_p a_p}< 1$$