This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2016 Kyiv Mathematical Festival, P1

Tags: algebra , equation
Prove that for every positive integers $a$ and $b$ there exist positive integers $x$ and $y$ such that $\dfrac{x}{y+a}+\dfrac{y}{x+b}=\dfrac{3}{2}.$

2012 Math Hour Olympiad, 5-7

[u]Round 1[/u] [b]p1.[/b] Tom and Jerry stole a chain of $7$ sausages and are now trying to divide the bounty. They take turns biting the sausages at one of the connections. When one of them breaks a connection, he may eat any single sausages that may fall out. Tom takes the first bite. Each of them is trying his best to eat more sausages than his opponent. Who will succeed? [b]p2. [/b]The King of the Mountain Dwarves wants to light his underground throne room by placing several torches so that the whole room is lit. The king, being very miserly, wants to use as few torches as possible. What is the least number of torches he could use? (You should show why he can't do it with a smaller number of torches.) This is the shape of the throne room: [img]https://cdn.artofproblemsolving.com/attachments/b/2/719daafd91fc9a11b8e147bb24cb66b7a684e9.png[/img] Also, the walls in all rooms are lined with velvet and do not reflect the light. For example, the picture on the right shows how another room in the castle is partially lit. [img]https://cdn.artofproblemsolving.com/attachments/5/1/0f6971274e8c2ff3f2d0fa484b567ff3d631fb.png[/img] [b]p3.[/b] In the Hundred Acre Wood, all the animals are either knights or liars. Knights always tell the truth and liars always lie. One day in the Wood, Winnie-the-Pooh, a knight, decides to visit his friend Rabbit, also a noble knight. Upon arrival, Pooh finds his friend sitting at a round table with $5$ other guests. One-by-one, Pooh asks each person at the table how many of his two neighbors are knights. Surprisingly, he gets the same answer from everybody! "Oh bother!" proclaims Pooh. "I still don't have enough information to figure out how many knights are at this table." "But it's my birthday," adds one of the guests. "Yes, it's his birthday!" agrees his neighbor. Now Pooh can tell how many knights are at the table. Can you? [b]p4.[/b] Several girls participate in a tennis tournament in which each player plays each other player exactly once. At the end of the tournament, it turns out that each player has lost at least one of her games. Prove that it is possible to find three players $A$, $B$, and $C$ such that $A$ defeated $B$, $B$ defeated $C$, and $C$ defeated $A$. [b]p5.[/b] There are $40$ piles of stones with an equal number of stones in each. Two players, Ann and Bob, can select any two piles of stones and combine them into one bigger pile, as long as this pile would not contain more than half of all the stones on the table. A player who can’t make a move loses. Ann goes first. Who wins? [u]Round 2[/u] [b]p6.[/b] In a galaxy far, far away, there is a United Galactic Senate with $100$ Senators. Each Senator has no more than three enemies. Tired of their arguments, the Senators want to split into two parties so that each Senator has no more than one enemy in his own party. Prove that they can do this. (Note: If $A$ is an enemy of $B$, then $B$ is an enemy of $A$.) [b]p7.[/b] Harry has a $2012$ by $2012$ chessboard and checkers numbered from $1$ to $2012 \times 2012$. Can he place all the checkers on the chessboard in such a way that whatever row and column Professor Snape picks, Harry will be able to choose three checkers from this row and this column such that the product of the numbers on two of the checkers will be equal to the number on the third? [img]https://cdn.artofproblemsolving.com/attachments/b/3/a87d559b340ceefee485f41c8fe44ae9a59113.png[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1997 All-Russian Olympiad Regional Round, 8.2

There are 300 apples, any two of which differ in weight by no more than twice. Prove that they can be arranged in packages of two apples so that any two packages differ in weight by no more than one and a half times.

2007 Mid-Michigan MO, 10-12

[b]p1.[/b] $17$ rooks are placed on an $8\times 8$ chess board. Prove that there must be at least one rook that is attacking at least $2$ other rooks. [b]p2.[/b] In New Scotland there are three kinds of coins: $1$ cent, $6$ cent, and $36$ cent coins. Josh has $99$ of the $36$-cent coins (and no other coins). He is allowed to exchange a $36$ cent coin for $6$ coins of $6$ cents, and to exchange a $6$ cent coin for $6$ coins of $1$ cent. Is it possible that after several exchanges Josh will have $500$ coins? [b]p3.[/b] Find all solutions $a, b, c, d, e, f, g, h, i$ if these letters represent distinct digits and the following multiplication is correct: $\begin{tabular}{ccccc} & & a & b & c \\ x & & & d & e \\ \hline & f & a & c & c \\ + & g & h & i & \\ \hline f & f & f & c & c \\ \end{tabular}$ [b]p4.[/b] Pinocchio rode a bicycle for $3.5$ hours. During every $1$-hour period he went exactly $5$ km. Is it true that his average speed for the trip was $5$ km/h? Explain your reasoning. [b]p5.[/b] Let $a, b, c$ be odd integers. Prove that the equation $ax^2 + bx + c = 0$ cannot have a rational solution. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2010 Middle European Mathematical Olympiad, 5

Tags: algebra , induction
Three strictly increasing sequences \[a_1, a_2, a_3, \ldots,\qquad b_1, b_2, b_3, \ldots,\qquad c_1, c_2, c_3, \ldots\] of positive integers are given. Every positive integer belongs to exactly one of the three sequences. For every positive integer $n$, the following conditions hold: (a) $c_{a_n}=b_n+1$; (b) $a_{n+1}>b_n$; (c) the number $c_{n+1}c_{n}-(n+1)c_{n+1}-nc_n$ is even. Find $a_{2010}$, $b_{2010}$ and $c_{2010}$. [i](4th Middle European Mathematical Olympiad, Team Competition, Problem 1)[/i]

2021 Irish Math Olympiad, 5

The function $g : [0, \infty) \to [0, \infty)$ satisfies the functional equation: $g(g(x)) = \frac{3x}{x + 3}$, for all $x \ge 0$. You are also told that for $2 \le x \le 3$: $g(x) = \frac{x + 1}{2}$. (a) Find $g(2021)$. (b) Find $g(1/2021)$.

2019 Thailand Mathematical Olympiad, 3

Tags: algebra
Find all functions $f:\mathbb{R}^+\to\mathbb{R}^+$ such that $f(x+yf(x)+y^2) = f(x)+2y$ for every $x,y\in\mathbb{R}^+$.

2022 IMO Shortlist, A7

For a positive integer $n$ we denote by $s(n)$ the sum of the digits of $n$. Let $P(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ be a polynomial, where $n \geqslant 2$ and $a_i$ is a positive integer for all $0 \leqslant i \leqslant n-1$. Could it be the case that, for all positive integers $k$, $s(k)$ and $s(P(k))$ have the same parity?

2005 Vietnam Team Selection Test, 3

Tags: algebra
$n$ is called [i]diamond 2005[/i] if $n=\overline{...ab999...99999cd...}$, e.g. $2005 \times 9$. Let $\{a_n\}:a_n< C\cdot n,\{a_n\}$ is increasing. Prove that $\{a_n\}$ contain infinite [i]diamond 2005[/i]. Compare with [url=http://www.mathlinks.ro/Forum/topic-15091.html]this problem.[/url]

2007 Indonesia TST, 2

Solve the equation \[ x\plus{}a^3\equal{}\sqrt[3]{a\minus{}x}\] where $ a$ is a real parameter.

1992 Taiwan National Olympiad, 3

If $x_{1},x_{2},...,x_{n}(n>2)$ are positive real numbers with $x_{1}+x_{2}+...+x_{n}=1$. Prove that $x_{1}^{2}x_{2}+x_{2}^{2}x_{3}+...+x_{n}^{2}x_{1}\leq\frac{4}{27}$.

1949-56 Chisinau City MO, 57

Tags: algebra , complex
Solve the equation: $| z |- 2 = 1 + 2 i$, where $| r |$ is the modulus of a complex number $z$.

2012 Thailand Mathematical Olympiad, 2

Let $a_1, a_2, ..., a_{2012}$ be pairwise distinct integers. Show that the equation $(x -a_1)(x - a_2)...(x - a_{2012}) = (1006!)^2$ has at most one integral solution.

2011 Putnam, B2

Let $S$ be the set of all ordered triples $(p,q,r)$ of prime numbers for which at least one rational number $x$ satisfies $px^2+qx+r=0.$ Which primes appear in seven or more elements of $S?$

2010 Vietnam National Olympiad, 1

Solve the system equations \[\left\{\begin{array}{cc}x^{4}-y^{4}=240\\x^{3}-2y^{3}=3(x^{2}-4y^{2})-4(x-8y)\end{array}\right.\]

2018 CMIMC Number Theory, 1

Suppose $a$, $b$, and $c$ are relatively prime integers such that \[\frac{a}{b+c} = 2\qquad\text{and}\qquad \frac{b}{a+c} = 3.\] What is $|c|$?

2022 AMC 12/AHSME, 20

Tags: algebra
Let $P(x)$ be a polynomial with rational coefficients such that when $P(x)$ is divided by the polynomial $x^2 + x + 1$, the remainder is $x + 2$, and when $P(x)$ is divided by the polynomial $x^2 + 1$, the remainder is $2x + 1$. There is a unique polynomial of least degree with these two properties. What is the sum of the squares of the coefficients of that polynomial? $\textbf{(A) } 10 \qquad \textbf{(B) } 13 \qquad \textbf{(C) } 19 \qquad \textbf{(D) } 20 \qquad \textbf{(E) } 23$

2012 Online Math Open Problems, 32

The sequence $\{a_n\}$ satisfies $a_0=1, a_1=2011,$ and $a_n=2a_{n-1}+a_{n-2}$ for all $n \geq 2$. Let \[ S = \sum_{i=1}^{\infty} \frac{a_{i-1}}{a_i^2-a_{i-1}^2} \] What is $\frac{1}{S}$? [i]Author: Ray Li[/i]

2021 Saudi Arabia BMO TST, 3

Let $a$, $b$, and $c$ be positive real numbers. Prove that $$(a^5 - a^2 +3)(b^5 - b^2 +3)(c^5 - c^2 +3)\ge (a+b+c)^3$$

2008 Thailand Mathematical Olympiad, 6

Let $f : R^+ \to R^+$ satisfy $f(xy)^2 = f(x^2)f(y^2)$ for all positive reals $x, y$ with $x^2y^3 > 2008.$ Prove that $f(xy)^2 = f(x^2)f(y^2)$ for all positive reals $x, y$.

1983 Kurschak Competition, 2

Prove that $f(2) \ge 3^n$ where the polynomial $f(x) = x_n + a_1x_{n-1} + ...+ a_{n-1}x + 1$ has non-negative coefficients and $n$ real roots.

2012 District Olympiad, 2

Let $a, b$ and $c$ be positive real numbers such that $$a^2+ab+ac-bc = 0.$$ a) Show that if two of the numbers $a, b$ and $c$ are equal, then at least one of the numbers $a, b$ and $c$ is irrational. b) Show that there exist infinitely many triples $(m, n, p)$ of positive integers such that $$m^2 + mn + mp -np = 0.$$

2002 Mid-Michigan MO, 7-9

[b]p1.[/b] One out of $12$ coins is counterfeited. It is known that its weight differs from the weight of a valid coin but it is unknown whether it is lighter or heavier. How to detect the counterfeited coin with the help of four trials using only a two-pan balance without weights? [b]p2.[/b] Below a $3$-digit number $c d e$ is multiplied by a $2$-digit number $a b$ . Find all solutions $a, b, c, d, e, f, g$ if it is known that they represent distinct digits. $\begin{tabular}{ccccc} & & c & d & e \\ x & & & a & b \\ \hline & & f & e & g \\ + & c & d & e & \\ \hline & b & b & c & g \\ \end{tabular}$ [b]p3.[/b] Find all integer $n$ such that $\frac{n + 1}{2n - 1}$is an integer. [b]p4[/b]. There are several straight lines on the plane which split the plane in several pieces. Is it possible to paint the plane in brown and green such that each piece is painted one color and no pieces having a common side are painted the same color? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2013 Online Math Open Problems, 45

Let $N$ denote the number of ordered 2011-tuples of positive integers $(a_1,a_2,\ldots,a_{2011})$ with $1\le a_1,a_2,\ldots,a_{2011} \le 2011^2$ such that there exists a polynomial $f$ of degree $4019$ satisfying the following three properties: [list] [*] $f(n)$ is an integer for every integer $n$; [*] $2011^2 \mid f(i) - a_i$ for $i=1,2,\ldots,2011$; [*] $2011^2 \mid f(n+2011) - f(n)$ for every integer $n$. [/list] Find the remainder when $N$ is divided by $1000$. [i]Victor Wang[/i]

2016 Taiwan TST Round 1, 1

Suppose function $f:[0,\infty)\to[0,\infty)$ satisfies (1)$\forall x,y \geq 0,$ we have $f(x)f(y)\leq y^2f(\frac{x}{2})+x^2f(\frac{y}{2})$; (2)$\forall 0 \leq x \leq 1, f(x) \leq 2016$. Prove that $f(x)\leq x^2$ for all $x\geq 0$.