This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

1966 IMO Longlists, 26

Prove the inequality [b]a.)[/b] $ \left( a_{1}+a_{2}+...+a_{k}\right) ^{2}\leq k\left( a_{1}^{2}+a_{2}^{2}+...+a_{k}^{2}\right) , $ where $k\geq 1$ is a natural number and $a_{1},$ $a_{2},$ $...,$ $a_{k}$ are arbitrary real numbers. [b]b.)[/b] Using the inequality (1), show that if the real numbers $a_{1},$ $a_{2},$ $...,$ $a_{n}$ satisfy the inequality \[ a_{1}+a_{2}+...+a_{n}\geq \sqrt{\left( n-1\right) \left( a_{1}^{2}+a_{2}^{2}+...+a_{n}^{2}\right) }, \] then all of these numbers $a_{1},$ $a_{2},$ $\ldots,$ $a_{n}$ are non-negative.

2011 Armenian Republican Olympiads, Problem 1

Tags: algebra , function
Does there exist a function $f\colon \mathbb{R}\to\mathbb{R}$ such that for any $x>y,$ it satisfies $f(x)-f(y)>\sqrt{x-y}.$

2019 CMI B.Sc. Entrance Exam, 3

Evaluate $\int_{ 0 }^{ \infty } ( 1 + x^2 )^{-( m + 1 )} \mathrm{d}x$ where $m \in \mathbb{N} $

1971 Bulgaria National Olympiad, Problem 2

Tags: equation , algebra
Prove that the equation $$\sqrt{2-x^2}+\sqrt[3]{3-x^3}=0$$ has no real solutions.

2000 Romania Team Selection Test, 2

Let $P,Q$ be two monic polynomials with complex coefficients such that $P(P(x))=Q(Q(x))$ for all $x$. Prove that $P=Q$. [i]Marius Cavachi[/i]

2020 Peru Cono Sur TST., P5

Tags: algebra
Find the smallest positive integer $n$ such that for any $n$ distinct real numbers $b_1, b_2,\ldots ,b_n$ in the interval $[ 1, 1000 ]$ there always exist $b_i$ and $b_j$ such that: $$0<b_i-b_j<1+3\sqrt[3]{b_ib_j}$$

2022 Assara - South Russian Girl's MO, 6

There are $2022$ numbers arranged in a circle $a_1, a_2, . . ,a_{2022}$. It turned out that for any three consecutive $a_i$, $a_{i+1}$, $a_{i+2}$ the equality $a_i =\sqrt2 a_{i+2} - \sqrt3 a_{i+1}$. Prove that $\sum^{2022}_{i=1} a_ia_{i+2} = 0$, if we know that $a_{2023} = a_1$, $a_{2024} = a_2$.

1969 IMO Longlists, 66

$(USS 3)$ $(a)$ Prove that if $0 \le a_0 \le a_1 \le a_2,$ then $(a_0 + a_1x - a_2x^2)^2 \le (a_0 + a_1 + a_2)^2\left(1 +\frac{1}{2}x+\frac{1}{3}x^2+\frac{1}{2}x^3+x^4\right)$ $(b)$ Formulate and prove the analogous result for polynomials of third degree.

2007 Hungary-Israel Binational, 3

Let $ t \ge 3$ be a given real number and assume that the polynomial $ f(x)$ satisfies $|f(k)\minus{}t^k|<1$, for $ k\equal{}0,1,2,\ldots ,n$. Prove that the degree of $f(x)$ is at least $n$.

2017 IFYM, Sozopol, 5

$f: \mathbb{R} \rightarrow \mathbb{R}$ is a function such that for $\forall x,y\in \mathbb{R}$ the equation $f(xy+x+y)=f(xy)+f(x)+f(y)$ is true. Prove that $f(x+y)=f(x)+f(y)$ for $\forall$ $x,y\in \mathbb{R}$.

2010 Contests, 3

Find all functions $g:\mathbb{N}\rightarrow\mathbb{N}$ such that \[\left(g(m)+n\right)\left(g(n)+m\right)\] is a perfect square for all $m,n\in\mathbb{N}.$ [i]Proposed by Gabriel Carroll, USA[/i]

2005 Czech And Slovak Olympiad III A, 1

Consider all arithmetical sequences of real numbers $(x_i)^{\infty}=1$ and $(y_i)^{\infty} =1$ with the common first term, such that for some $k > 1, x_{k-1}y_{k-1} = 42, x_ky_k = 30$, and $x_{k+1}y_{k+1} = 16$. Find all such pairs of sequences with the maximum possible $k$.

2011 Baltic Way, 2

Let $f:\mathbb{Z}\to\mathbb{Z}$ be a function such that for all integers $x$ and $y$, the following holds: \[f(f(x)-y)=f(y)-f(f(x)).\] Show that $f$ is bounded.

1969 All Soviet Union Mathematical Olympiad, 117

Tags: algebra , digit , sequence
Given a finite sequence of zeros and ones, which has two properties: a) if in some arbitrary place in the sequence we select five digits in a row and also select five digits in any other place in a row, then these fives will be different (they may overlap); b) if you add any digit to the right of the sequence, then property (a) will no longer hold true. Prove that the first four digits of our sequence coincide with the last four

2018 Mathematical Talent Reward Programme, MCQ: P 5

Let the maximum and minimum value of $f(x)=\cos \left(x^{2018}\right) \sin x$ are $M$ and $m$ respectively where $x \in[-2 \pi, 2 \pi] .$ Then $$ M+m= $$ [list=1] [*] $\frac{1}{2}$ [*] $-\frac{1}{\sqrt{2}}$ [*] $\frac{1}{2018}$ [*] Does not exists [/list]

2024 Middle European Mathematical Olympiad, 2

Find all functions $f:\mathbb{R} \to \mathbb{R}$ such that \[yf(x+1)=f(x+y-f(x))+f(x)f(f(y))\] for all $x,y \in \mathbb{R}$.

2005 Postal Coaching, 19

Find all functions $f : \mathbb{R} \mapsto \mathbb{R}$ such that $f(xy+f(x)) = xf(y) +f(x)$ for all $x,y \in \mathbb{R}$.

2024 Switzerland Team Selection Test, 3

Determine all monic polynomial with integer coefficient $P$ such that for every integer $a,b$ there exists integer $c$ so that \[P(a)P(b)=P(c)\]

2014 Bulgaria JBMO TST, 6

Tags: algebra
If $a,b$ are real numbers such that $a^3 +12a^2 + 49a + 69 = 0$ and $ b^3 - 9b^2 + 28b - 31 = 0,$ find $a + b .$

2007 Romania National Olympiad, 2

Tags: logarithm , algebra
Solve the equation \[2^{x^{2}+x}+\log_{2}x = 2^{x+1}\]

1998 Yugoslav Team Selection Test, Problem 3

Tags: algebra , sequence
Prove that there are no positive integers $n$ and $k\le n$ such that the numbers $$\binom nk,\binom n{k+1},\binom n{k+2},\binom n{k+3}$$in this order form an arithmetic progression.

2007 Indonesia TST, 3

Find all pairs of function $ f: \mathbb{N} \rightarrow \mathbb{N}$ and polynomial with integer coefficients $ p$ such that: (i) $ p(mn) \equal{} p(m)p(n)$ for all positive integers $ m,n > 1$ with $ \gcd(m,n) \equal{} 1$, and (ii) $ \sum_{d|n}f(d) \equal{} p(n)$ for all positive integers $ n$.

1991 Arnold's Trivium, 45

Find the self-intersection index of the surface $x^4+y^4=1$ in the projective plane $\text{CP}^2$.

2015 All-Russian Olympiad, 3

Let $a,x,y$ be positive integer such that $a>100,x>100,y>100$ and $y^2-1=a^2(x^2-1)$ . Find the minimum value of $\frac{a}{x}$.

1992 IMO Shortlist, 19

Let $ f(x) \equal{} x^8 \plus{} 4x^6 \plus{} 2x^4 \plus{} 28x^2 \plus{} 1.$ Let $ p > 3$ be a prime and suppose there exists an integer $ z$ such that $ p$ divides $ f(z).$ Prove that there exist integers $ z_1, z_2, \ldots, z_8$ such that if \[ g(x) \equal{} (x \minus{} z_1)(x \minus{} z_2) \cdot \ldots \cdot (x \minus{} z_8),\] then all coefficients of $ f(x) \minus{} g(x)$ are divisible by $ p.$