This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 22

2000 IMO Shortlist, 7

For a polynomial $ P$ of degree 2000 with distinct real coefficients let $ M(P)$ be the set of all polynomials that can be produced from $ P$ by permutation of its coefficients. A polynomial $ P$ will be called [b]$ n$-independent[/b] if $ P(n) \equal{} 0$ and we can get from any $ Q \in M(P)$ a polynomial $ Q_1$ such that $ Q_1(n) \equal{} 0$ by interchanging at most one pair of coefficients of $ Q.$ Find all integers $ n$ for which $ n$-independent polynomials exist.

1976 IMO Longlists, 35

Let $P$ be a polynomial with real coefficients such that $P(x) > 0$ if $x > 0$. Prove that there exist polynomials $Q$ and $R$ with nonnegative coefficients such that $P(x) = \frac{Q(x)}{R(x)}$ if $x > 0.$

2008 Hanoi Open Mathematics Competitions, 3

Find the coefficient of $x$ in the expansion of $(1 + x)(1 - 2x)(1 + 3x)(1 - 4x) ...(1 - 2008x)$.

1992 IMO Shortlist, 19

Let $ f(x) \equal{} x^8 \plus{} 4x^6 \plus{} 2x^4 \plus{} 28x^2 \plus{} 1.$ Let $ p > 3$ be a prime and suppose there exists an integer $ z$ such that $ p$ divides $ f(z).$ Prove that there exist integers $ z_1, z_2, \ldots, z_8$ such that if \[ g(x) \equal{} (x \minus{} z_1)(x \minus{} z_2) \cdot \ldots \cdot (x \minus{} z_8),\] then all coefficients of $ f(x) \minus{} g(x)$ are divisible by $ p.$

1983 IMO Shortlist, 16

Let $F(n)$ be the set of polynomials $P(x) = a_0+a_1x+\cdots+a_nx^n$, with $a_0, a_1, . . . , a_n \in \mathbb R$ and $0 \leq a_0 = a_n \leq a_1 = a_{n-1 } \leq \cdots \leq a_{[n/2] }= a_{[(n+1)/2]}.$ Prove that if $f \in F(m)$ and $g \in F(n)$, then $fg \in F(m + n).$

2016 Singapore MO Open, 4

Let $b$ be a number with $-2 < b < 0$. Prove that there exists a positive integer $n$ such that all the coefficients of the polynomial $(x + 1)^n(x^2 + bx + 1)$ are positive.

1973 IMO, 3

Determine the minimum value of $a^{2} + b^{2}$ when $(a,b)$ traverses all the pairs of real numbers for which the equation \[ x^{4} + ax^{3} + bx^{2} + ax + 1 = 0 \] has at least one real root.

2005 IMO Shortlist, 1

Find all pairs of integers $a,b$ for which there exists a polynomial $P(x) \in \mathbb{Z}[X]$ such that product $(x^2+ax+b)\cdot P(x)$ is a polynomial of a form \[ x^n+c_{n-1}x^{n-1}+\cdots+c_1x+c_0 \] where each of $c_0,c_1,\ldots,c_{n-1}$ is equal to $1$ or $-1$.

1947 Moscow Mathematical Olympiad, 130

Which of the polynomials, $(1+x^2 -x^3)^{1000}$ or $(1-x^2 +x^3)^{1000}$, has the greater coefficient of $x^{20}$ after expansion and collecting the terms?

1976 IMO Shortlist, 8

Let $P$ be a polynomial with real coefficients such that $P(x) > 0$ if $x > 0$. Prove that there exist polynomials $Q$ and $R$ with nonnegative coefficients such that $P(x) = \frac{Q(x)}{R(x)}$ if $x > 0.$

1973 IMO Shortlist, 11

Determine the minimum value of $a^{2} + b^{2}$ when $(a,b)$ traverses all the pairs of real numbers for which the equation \[ x^{4} + ax^{3} + bx^{2} + ax + 1 = 0 \] has at least one real root.

1974 IMO, 6

Let $P(x)$ be a polynomial with integer coefficients. We denote $\deg(P)$ its degree which is $\geq 1.$ Let $n(P)$ be the number of all the integers $k$ for which we have $(P(k))^{2}=1.$ Prove that $n(P)- \deg(P) \leq 2.$

2006 Polish MO Finals, 3

Find all pairs of integers $a,b$ for which there exists a polynomial $P(x) \in \mathbb{Z}[X]$ such that product $(x^2+ax+b)\cdot P(x)$ is a polynomial of a form \[ x^n+c_{n-1}x^{n-1}+\cdots+c_1x+c_0 \] where each of $c_0,c_1,\ldots,c_{n-1}$ is equal to $1$ or $-1$.

1992 IMO Longlists, 31

Let $ f(x) \equal{} x^8 \plus{} 4x^6 \plus{} 2x^4 \plus{} 28x^2 \plus{} 1.$ Let $ p > 3$ be a prime and suppose there exists an integer $ z$ such that $ p$ divides $ f(z).$ Prove that there exist integers $ z_1, z_2, \ldots, z_8$ such that if \[ g(x) \equal{} (x \minus{} z_1)(x \minus{} z_2) \cdot \ldots \cdot (x \minus{} z_8),\] then all coefficients of $ f(x) \minus{} g(x)$ are divisible by $ p.$

2016 India PRMO, 7

Find the coefficient of $a^5b^5c^5d^6$ in the expansion of the following expression $(bcd +acd +abd +abc)^7$

1947 Moscow Mathematical Olympiad, 128

Find the coefficient of $x^2$ after expansion and collecting the terms of the following expression (there are $k$ pairs of parentheses): $$((... (((x - 2)^2 - 2)^2 -2)^2 -... -2)^2 - 2)^2$$

1983 IMO Longlists, 33

Let $F(n)$ be the set of polynomials $P(x) = a_0+a_1x+\cdots+a_nx^n$, with $a_0, a_1, . . . , a_n \in \mathbb R$ and $0 \leq a_0 = a_n \leq a_1 = a_{n-1 } \leq \cdots \leq a_{[n/2] }= a_{[(n+1)/2]}.$ Prove that if $f \in F(m)$ and $g \in F(n)$, then $fg \in F(m + n).$

1974 IMO Shortlist, 3

Let $P(x)$ be a polynomial with integer coefficients. We denote $\deg(P)$ its degree which is $\geq 1.$ Let $n(P)$ be the number of all the integers $k$ for which we have $(P(k))^{2}=1.$ Prove that $n(P)- \deg(P) \leq 2.$

1997 IMO Shortlist, 11

Let $ P(x)$ be a polynomial with real coefficients such that $ P(x) > 0$ for all $ x \geq 0.$ Prove that there exists a positive integer n such that $ (1 \plus{} x)^n \cdot P(x)$ is a polynomial with nonnegative coefficients.

1947 Moscow Mathematical Olympiad, 125

Find the coefficients of $x^{17}$ and $x^{18}$ after expansion and collecting the terms of $(1+x^5+x^7)^{20}$.

1951 Moscow Mathematical Olympiad, 202

Dividing $x^{1951} - 1$ by $P(x) = x^4 + x^3 + 2x^2 + x + 1$ one gets a quotient and a remainder. Find the coefficient of $x^{14}$ in the quotient.

2019 Thailand TSTST, 3

Let $n\geq 2$ be an integer. Determine the number of terms in the polynomial $$\prod_{1\leq i< j\leq n}(x_i+x_j)$$ whose coefficients are odd integers.