This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2015 Miklos Schweitzer, 4

Let $a_n$ be a series of positive integers with $a_1=1$ and for any arbitrary prime number $p$, the set $\{a_1,a_2,\cdots,a_p\}$ is a complete remainder system modulo $p$. Prove that $\lim_{n\rightarrow \infty} \cfrac{a_n}{n}=1$.

2024 Iran MO (2nd Round), 2

Find all sequences $(a_n)_{n\geq 1}$ of positive integers such that for all integers $n\geq 3$ we have $$ \dfrac{1}{a_1 a_3} + \dfrac{1}{a_2a_4} + \cdots + \dfrac{1}{a_{n-2}a_n}= 1 - \dfrac{1}{a_1^2+a_2^2+\cdots +a_{n-1}^2}. $$