This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2022 JBMO TST - Turkey, 4

Given a convex quadrilateral $ABCD$ such that $m(\widehat{ABC})=m(\widehat{BCD})$. The lines $AD$ and $BC$ intersect at a point $P$ and the line passing through $P$ which is parallel to $AB$, intersects $BD$ at $T$. Prove that $$m(\widehat{ACB})=m(\widehat{PCT})$$

2021 Iran MO (3rd Round), 1

An acute triangle $ABC$ is given. Let $D$ be the foot of altitude dropped for $A$. Tangents from $D$ to circles with diameters $AB$ and $AC$ intersects with the said circles at $K$ and $L$, in respective. Point $S$ in the plane is given so that $\angle ABC + \angle ABS = \angle ACB + \angle ACS = 180^\circ$. Prove that $A, K, L$ and $S$ lie on a circle.