This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2021 Olympic Revenge, 3

Let $I, C, \omega$ and $\Omega$ be the incenter, circumcenter, incircle and circumcircle, respectively, of the scalene triangle $XYZ$ with $XZ > YZ > XY$. The incircle $\omega$ is tangent to the sides $YZ, XZ$ and $XY$ at the points $D, E$ and $F$. Let $S$ be the point on $\Omega$ such that $XS, CI$ and $YZ$ are concurrent. Let $(XEF) \cap \Omega = R$, $(RSD) \cap (XEF) = U$, $SU \cap CI = N$, $EF \cap YZ = A$, $EF \cap CI = T$ and $XU \cap YZ = O$. Prove that $NARUTO$ is cyclic.