This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2016 APMC, 1

Given triangle $ABC$ with the inner - bisector $AD$. The line passes through $D$ and perpendicular to $BC$ intersects the outer - bisector of $\angle BAC$ at $I$. Circle $(I,ID)$ intersects $CA$, $AB$ at $E$, $F$, reps. The symmedian line of $\triangle AEF$ intersects the circle $(AEF)$ at $X$. Prove that the circles $(BXC)$ and $(AEF)$ are tangent. [Hide=Diagram] [asy]import graph; size(7.04cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = 7.02, xmax = 14.06, ymin = -1.54, ymax = 4.08; /* image dimensions */ /* draw figures */ draw((8.62,3.12)--(7.58,-0.38)); draw((7.58,-0.38)--(13.68,-0.38)); draw((13.68,-0.38)--(8.62,3.12)); draw((8.62,3.12)--(9.85183961338573,3.5535510951732316)); draw((9.85183961338573,3.5535510951732316)--(9.851839613385732,-0.38)); draw((9.851839613385732,-0.38)--(8.62,3.12)); draw(circle((10.012708209519483,1.129702986881574), 2.4291805937992947)); draw((8.62,3.12)--(9.470868507287285,-1.238276762688951), red); draw(shift((9.85183961338573,3.553551095173232))*xscale(3.9335510951732324)*yscale(3.9335510951732324)*arc((0,0),1,237.85842690125605,309.7357733435313), linetype("4 4")); draw(shift((10.63,3.8274278922585725))*xscale(5.196628663716066)*yscale(5.196628663716066)*arc((0,0),1,234.06132677886183,305.9386732211382), blue); /* dots and labels */ dot((8.62,3.12),linewidth(3.pt) + dotstyle); label("$A$", (8.48,3.24), NE * labelscalefactor); dot((7.58,-0.38),linewidth(3.pt) + dotstyle); label("$B$", (7.3,-0.58), NE * labelscalefactor); dot((13.68,-0.38),linewidth(3.pt) + dotstyle); label("$C$", (13.76,-0.26), NE * labelscalefactor); dot((9.851839613385732,-0.38),linewidth(3.pt) + dotstyle); label("$D$", (9.94,-0.26), NE * labelscalefactor); dot((9.85183961338573,3.5535510951732316),linewidth(3.pt) + dotstyle); label("$I$", (9.94,3.68), NE * labelscalefactor); dot((7.759138898806625,0.22287129406075654),linewidth(3.pt) + dotstyle); label("$F$", (7.46,0.16), NE * labelscalefactor); dot((12.36635458796946,0.5286480122740898),linewidth(3.pt) + dotstyle); label("$E$", (12.44,0.64), NE * labelscalefactor); dot((9.470868507287285,-1.238276762688951),linewidth(3.pt) + dotstyle); label("$X$", (9.56,-1.12), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */ [/asy] [/Hide]

2016 APMC, 4

Let $ABC$ be a triangle with $AB\neq AC$. Let the excircle $\omega$ opposite $A$ touch $BC$, $CA$, and $AB$ at $D$, $E$, and $F$, respectively. Suppose $X$ and $Y$ are points on the segments $AC$ and $AB$, respectively, such that $XY$ and $BC$ are parallel, and let $\Gamma$ be a circle through $X$ and $Y$ which is externally tangent to $\omega$ at $Z$. Prove that the lines $EF$, $DZ$, and $XY$ are concurrent.