This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3

2009 May Olympiad, 4

Three circumferences are tangent to each other, as shown in the figure. The region of the outer circle that is not covered by the two inner circles has an area equal to $2 \pi$. Determine the length of the $PQ$ segment . [img]https://cdn.artofproblemsolving.com/attachments/a/e/65c08c47d4d20a05222a9b6cf65e84a25283b7.png[/img]

Estonia Open Junior - geometry, 2000.1.5

Find the total area of the shaded area in the figure if all circles have an equal radius $R$ and the centers of the outer circles divide into six equal parts of the middle circle. [img]http://3.bp.blogspot.com/-Ax0QJ38poYU/XovXkdaM-3I/AAAAAAAALvM/DAZGVV7TQjEnSf2y1mbnse8lL6YIg-BQgCK4BGAYYCw/s400/estonia%2B2000%2Bo.j.1.5.png[/img]

May Olympiad L1 - geometry, 2009.4

Three circumferences are tangent to each other, as shown in the figure. The region of the outer circle that is not covered by the two inner circles has an area equal to $2 \pi$. Determine the length of the $PQ$ segment . [img]https://cdn.artofproblemsolving.com/attachments/a/e/65c08c47d4d20a05222a9b6cf65e84a25283b7.png[/img]