This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 17

2019 Germany Team Selection Test, 1

Determine all pairs $(n, k)$ of distinct positive integers such that there exists a positive integer $s$ for which the number of divisors of $sn$ and of $sk$ are equal.

2019 Brazil Team Selection Test, 1

Determine all pairs $(n, k)$ of distinct positive integers such that there exists a positive integer $s$ for which the number of divisors of $sn$ and of $sk$ are equal.

2020 Thailand TSTST, 2

For any positive integer $m \geq 2$, let $p(m)$ be the smallest prime dividing $m$ and $P(m)$ be the largest prime dividing $m$. Let $C$ be a positive integer. Define sequences $\{a_n\}$ and $\{b_n\}$ by $a_0 = b_0 = C$ and, for each positive integer $k$ such that $a_{k-1}\geq 2$, $$a_k=a_{k-1}-\frac{a_{k-1}}{p(a_{k-1})};$$ and, for each positive integer $k$ such that $b_{k-1}\geq 2$, $$b_k=b_{k-1}-\frac{b_{k-1}}{P(b_{k-1})}$$ It is easy to see that both $\{a_n\}$ and $\{b_n\}$ are finite sequences which terminate when they reach the number $1$. Prove that the numbers of terms in the two sequences are always equal.

2019 Thailand TST, 1

Determine all pairs $(n, k)$ of distinct positive integers such that there exists a positive integer $s$ for which the number of divisors of $sn$ and of $sk$ are equal.

2019 Belarus Team Selection Test, 3.1

Determine all pairs $(n, k)$ of distinct positive integers such that there exists a positive integer $s$ for which the number of divisors of $sn$ and of $sk$ are equal.

2018 USA Team Selection Test, 1

Let $n \ge 2$ be a positive integer, and let $\sigma(n)$ denote the sum of the positive divisors of $n$. Prove that the $n^{\text{th}}$ smallest positive integer relatively prime to $n$ is at least $\sigma(n)$, and determine for which $n$ equality holds. [i]Proposed by Ashwin Sah[/i]

1961 Putnam, A4

Let $\Omega(n)$ be the number of prime factors of $n$. Define $f(1)=1$ and $f(n)=(-1)^{\Omega(n)}.$ Furthermore, let $$F(n)=\sum_{d|n} f(d).$$ Prove that $F(n)=0,1$ for all positive integers $n$. For which integers $n$ is $F(n)=1?$

Russian TST 2019, P1

Determine all pairs $(n, k)$ of distinct positive integers such that there exists a positive integer $s$ for which the number of divisors of $sn$ and of $sk$ are equal.

2018 IMO Shortlist, N1

Determine all pairs $(n, k)$ of distinct positive integers such that there exists a positive integer $s$ for which the number of divisors of $sn$ and of $sk$ are equal.

2024 Junior Balkan Team Selection Tests - Romania, P3

Let $\sigma(\cdot)$ denote the divisor sum function and $d(\cdot)$ denote the divisor counting function. Find all positve integers $n$ such that $\sigma(d(n))=n.$ [i]Andrei Bâra[/i]

2019 Estonia Team Selection Test, 9

Determine all pairs $(n, k)$ of distinct positive integers such that there exists a positive integer $s$ for which the number of divisors of $sn$ and of $sk$ are equal.

2019 Hong Kong TST, 1

Determine all pairs $(n, k)$ of distinct positive integers such that there exists a positive integer $s$ for which the number of divisors of $sn$ and of $sk$ are equal.

2019 Philippine TST, 4

Determine all pairs $(n, k)$ of distinct positive integers such that there exists a positive integer $s$ for which the number of divisors of $sn$ and of $sk$ are equal.

2019 Estonia Team Selection Test, 9

Determine all pairs $(n, k)$ of distinct positive integers such that there exists a positive integer $s$ for which the number of divisors of $sn$ and of $sk$ are equal.

2019 Germany Team Selection Test, 1

Determine all pairs $(n, k)$ of distinct positive integers such that there exists a positive integer $s$ for which the number of divisors of $sn$ and of $sk$ are equal.

2023 Thailand Online MO, 5

For each positive integer $k$, let $d(k)$ be the number of positive divisors of $k$ and $\sigma(k)$ be the sum of positive divisors of $k$. Let $\mathbb N$ be the set of all positive integers. Find all functions $f: \mathbb{N} \to \mathbb N$ such that \begin{align*} f(d(n+1)) &= d(f(n)+1)\quad \text{and} \\ f(\sigma(n+1)) &= \sigma(f(n)+1) \end{align*} for all positive integers $n$.

2022 District Olympiad, P1

Let $f:\mathbb{N}^*\rightarrow \mathbb{N}^*$ be a function such that $\frac{x^3+3x^2f(y)}{x+f(y)}+\frac{y^3+3y^2f(x)}{y+f(x)}=\frac{(x+y)^3}{f(x+y)},~(\forall)x,y\in\mathbb{N}^*.$ $a)$ Prove that $f(1)=1.$ $b)$ Find function $f.$