This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 93

2023 OMpD, 2

Find all pairs $(a,b)$ of real numbers such that $\lfloor an + b \rfloor$ is a perfect square, for all positive integer $n$.

IV Soros Olympiad 1997 - 98 (Russia), 10.3

Three different digits were used to create three different three-digit numbers forming an arithmetic progression. (In each number, all the digits are different.) What is the largest difference in this progression?

2006 Dutch Mathematical Olympiad, 3

$1+2+3+4+5+6=6+7+8$. What is the smallest number $k$ greater than $6$ for which: $1 + 2 +...+ k = k + (k+1) +...+ n$, with $n$ an integer greater than $k$ ?

2019 IFYM, Sozopol, 1

Find the least value of $k\in \mathbb{N}$ with the following property: There doesn’t exist an arithmetic progression with 2019 members, from which exactly $k$ are integers.

1998 China Team Selection Test, 1

Find $k \in \mathbb{N}$ such that [b]a.)[/b] For any $n \in \mathbb{N}$, there does not exist $j \in \mathbb{Z}$ which satisfies the conditions $0 \leq j \leq n - k + 1$ and $\left( \begin{array}{c} n\\ j\end{array} \right), \left( \begin{array}{c} n\\ j + 1\end{array} \right), \ldots, \left( \begin{array}{c} n\\ j + k - 1\end{array} \right)$ forms an arithmetic progression. [b]b.)[/b] There exists $n \in \mathbb{N}$ such that there exists $j$ which satisfies $0 \leq j \leq n - k + 2$, and $\left( \begin{array}{c} n\\ j\end{array} \right), \left( \begin{array}{c} n\\ j + 1\end{array} \right), \ldots , \left( \begin{array}{c} n\\ j + k - 2\end{array} \right)$ forms an arithmetic progression. Find all $n$ which satisfies part [b]b.)[/b]

2017 Singapore Senior Math Olympiad, 5

Given $7$ distinct positive integers, prove that there is an infinite arithmetic progression of positive integers $a, a + d, a + 2d,..$ with $a < d$, that contains exactly $3$ or $4$ of the $7$ given integers.

1983 Czech and Slovak Olympiad III A, 4

Consider an arithmetic progression $a_0,\ldots,a_n$ with $n\ge2$. Prove that $$\sum_{k=0}^n(-1)^k\binom{n}{k}a_k=0.$$

1955 Polish MO Finals, 2

Prove that among the seven natural numbers forming an arithmetic progression with difference $ 30 $ , one and only one is divisible by $ 7 $ .

1991 Tournament Of Towns, (319) 6

An arithmetical progression (whose difference is not equal to zero) consists of natural numbers without any nines in its decimal notation. (a) Prove that the number of its terms is less than $100$. (b) Give an example of such a progression with $72$ terms. (c) Prove that the number of terms in any such progression does not exceed $72$. (V. Bugaenko and Tarasov, Moscow)

1975 Vietnam National Olympiad, 4

Find all terms of the arithmetic progression $-1, 18, 37, 56, ...$ whose only digit is $5$.

2005 Mexico National Olympiad, 4

A list of numbers $a_1,a_2,\ldots,a_m$ contains an arithmetic trio $a_i, a_j, a_k$ if $i < j < k$ and $2a_j = a_i + a_k$. Let $n$ be a positive integer. Show that the numbers $1, 2, 3, \ldots, n$ can be reordered in a list that does not contain arithmetic trios.

1980 IMO Shortlist, 13

Given three infinite arithmetic progressions of natural numbers such that each of the numbers 1,2,3,4,5,6,7 and 8 belongs to at least one of them, prove that the number 1980 also belongs to at least one of them.

2019 Malaysia National Olympiad, B3

An arithmetic sequence of five terms is considered $good$ if it contains 19 and 20. For example, $18.5,19.0,19.5,20.0,20.5$ is a $good$ sequence. For every $good$ sequence, the sum of its terms is totalled. What is the total sum of all $good$ sequences?

2020 Moldova Team Selection Test, 1

All members of geometrical progression $(b_n)_{n\geq1}$ are members of some arithmetical progression. It is known that $b_1$ is an integer. Prove that all members of this geometrical progression are integers. (progression is infinite)

2014 Albania Round 2, 2

Sides of a triangle form an arithmetic sequence with common difference $2$, and its area is $6 \text{ cm }^2$. Find its sides.

2020 Kazakhstan National Olympiad, 4

Alice and Bob play a game on the infinite side of a checkered strip, in which the cells are numbered with consecutive integers from left to right (..., $-2$, $-1$, $0$, $1$, $2$, ...). Alice in her turn puts one cross in any free cell, and Bob in his turn puts zeros in any 2020 free cells. Alice will win if he manages to get such 4 cells marked with crosses, the corresponding cell numbers will form an arithmetic progression. Bob's goal in this game is to prevent Alice from winning. They take turns and Alice moves first. Will Alice be able to win no matter how Bob plays?

2017 Bosnia And Herzegovina - Regional Olympiad, 3

Let $S$ be a set of $6$ positive real numbers such that $\left(a,b \in S \right) \left(a>b \right) \Rightarrow a+b \in S$ or $a-b \in S$ Prove that if we sort these numbers in ascending order, then they form an arithmetic progression

2015 NZMOC Camp Selection Problems, 5

Let $n$ be a positive integer greater than or equal to $6$, and suppose that $a_1, a_2, ...,a_n$ are real numbers such that the sums $a_i + a_j$ for $1 \le i<j\le n$, taken in some order, form consecutive terms of an arithmetic progression $A$, $A + d$, $...$ ,$A + (k-1)d$, where $k = n(n-1)/2$. What are the possible values of $d$?

2001 German National Olympiad, 1

Determine all real numbers $q$ for which the equation $x^4 -40x^2 +q = 0$ has four real solutions which form an arithmetic progression

Fractal Edition 1, P1

Show that any arithmetic progression where the first term and the common difference are non-zero natural numbers contains an infinite number of composite terms. *A number is composite if it is not prime.

1983 IMO, 2

Is it possible to choose $1983$ distinct positive integers, all less than or equal to $10^5$, no three of which are consecutive terms of an arithmetic progression?

2020 Iranian Our MO, 5

Concider two sequences $x_n=an+b$, $y_n=cn+d$ where $a,b,c,d$ are natural numbers and $gcd(a,b)=gcd(c,d)=1$, prove that there exist infinite $n$ such that $x_n$, $y_n$ are both square-free. [i]Proposed by Siavash Rahimi Shateranloo, Matin Yadollahi[/i] [b]Rated 3[/b]

I Soros Olympiad 1994-95 (Rus + Ukr), 11.8

Let's write down a segment of a series of integers from $0$ to $1995$. Among the numbers written out, two have been crossed out. Let's consider the longest arithmetic progression contained among the remaining $1994$ numbers. Let $K$ be the length of the progression. Which two numbers must be crossed out so that the value of $K$ is the smallest?

1998 All-Russian Olympiad Regional Round, 9.1

The lengths of the sides of a certain triangle and the diameter of the inscribed part circles are four consecutive terms of arithmetic progression. Find all such triangles.

2009 Tournament Of Towns, 4

Consider an in finite sequence consisting of distinct positive integers such that each term (except the rst one) is either an arithmetic mean or a geometric mean of two neighboring terms. Does it necessarily imply that starting at some point the sequence becomes either arithmetic progression or a geometric progression?