This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

Geometry Mathley 2011-12, 10.4

Let $A_1A_2A_3...A_n$ be a bicentric polygon with $n$ sides. Denote by $I_i$ the incenter of triangle $A_{i-1}A_iA_{i+1}, A_{i(i+1)}$ the intersection of $A_iA_{i+2}$ and $A_{i-1}A_{i+1},I_{i(i+1)}$ is the incenter of triangle $A_iA_{i(i+1)}A_{i+1}$ ($i = 1, n$). Prove that there exist $2n$ points $I_1, I_2, ..., I_n, I_{12}, I_{23}, ...., I_{n1}$ on the same circle. Nguyễn Văn Linh