Found problems: 26
2017 Morocco TST-, 2
The leader of an IMO team chooses positive integers $n$ and $k$ with $n > k$, and announces them to the deputy leader and a contestant. The leader then secretly tells the deputy leader an $n$-digit binary string, and the deputy leader writes down all $n$-digit binary strings which differ from the leader’s in exactly $k$ positions. (For example, if $n = 3$ and $k = 1$, and if the leader chooses $101$, the deputy leader would write down $001, 111$ and $100$.) The contestant is allowed to look at the strings written by the deputy leader and guess the leader’s string. What is the minimum number of guesses (in terms of $n$ and $k$) needed to guarantee the correct answer?
2015 Kurschak Competition, 3
Let $Q=\{0,1\}^n$, and let $A$ be a subset of $Q$ with $2^{n-1}$ elements. Prove that there are at least $2^{n-1}$ pairs $(a,b)\in A\times (Q\setminus A)$ for which sequences $a$ and $b$ differ in only one term.
2022 All-Russian Olympiad, 6
Given is a natural number $n > 5$. On a circular strip of paper is written a sequence of zeros and ones. For each sequence $w$ of $n$ zeros and ones we count the number of ways to cut out a fragment from the strip on which is written $w$. It turned out that the largest number $M$ is achieved for the sequence $11 00...0$ ($n-2$ zeros) and the smallest - for the sequence $00...011$ ($n-2$ zeros). Prove that there is another sequence of $n$ zeros and ones that occurs exactly $M$ times.
2017 Germany Team Selection Test, 1
The leader of an IMO team chooses positive integers $n$ and $k$ with $n > k$, and announces them to the deputy leader and a contestant. The leader then secretly tells the deputy leader an $n$-digit binary string, and the deputy leader writes down all $n$-digit binary strings which differ from the leader’s in exactly $k$ positions. (For example, if $n = 3$ and $k = 1$, and if the leader chooses $101$, the deputy leader would write down $001, 111$ and $100$.) The contestant is allowed to look at the strings written by the deputy leader and guess the leader’s string. What is the minimum number of guesses (in terms of $n$ and $k$) needed to guarantee the correct answer?
2016 IMO Shortlist, C1
The leader of an IMO team chooses positive integers $n$ and $k$ with $n > k$, and announces them to the deputy leader and a contestant. The leader then secretly tells the deputy leader an $n$-digit binary string, and the deputy leader writes down all $n$-digit binary strings which differ from the leader’s in exactly $k$ positions. (For example, if $n = 3$ and $k = 1$, and if the leader chooses $101$, the deputy leader would write down $001, 111$ and $100$.) The contestant is allowed to look at the strings written by the deputy leader and guess the leader’s string. What is the minimum number of guesses (in terms of $n$ and $k$) needed to guarantee the correct answer?
1992 Putnam, A5
For each positive integer $n$, let $a_n = 0$ (or $1$) if the number of $1$’s in the binary representation of $n$ is even (or
odd), respectively. Show that there do not exist positive integers $k$ and $m$ such that
$$a_{k+j}=a_{k+m+j} =a_{k+2m+j}$$
for $0 \leq j \leq m-1.$
1999 Tournament Of Towns, 5
For every non-negative integer $i$, define the number $M(i)$ as follows:
write $i$ down as a binary number, so that we have a string of zeroes and ones, if the number of ones in this string is even, then set $M(i) = 0$, otherwise set $M(i) = 1$. (The first terms of the sequence $M(i)$, $i = 0, 1, 2, ...$ are $0, 1, 1, 0, 1, 0, 0, 1,...$ )
(a) Consider the finite sequence $M(O), M(1), . . . , M(1000) $.
Prove that there are at least $320$ terms in this sequence which are equal to their neighbour on the right : $M(i) = M(i + 1 )$ .
(b) Consider the finite sequence $M(O), M(1), . . . , M(1000000)$ .
Prove that the number of terms $M(i)$ such that $M(i) = M(i +7)$ is at least $450000$.
(A Kanel)
2018 Romania Team Selection Tests, 3
For every integer $n \ge 2$ let $B_n$ denote the set of all binary $n$-nuples of zeroes and ones, and split $B_n$ into equivalence classes by letting two $n$-nuples be equivalent if one is obtained from the another by a cyclic permutation.(for example 110, 011 and 101 are equivalent). Determine the integers $n \ge 2$ for which $B_n$ splits into an odd number of equivalence classes.
2020 OMMock - Mexico National Olympiad Mock Exam, 3
Let $n$ be a fixed positive integer. Oriol has $n$ cards, each of them with a $0$ written on one side and $1$ on the other. We place these cards in line, some face up and some face down (possibly all on the same side). We begin the following process consisting of $n$ steps:
1) At the first step, Oriol flips the first card
2) At the second step, Oriol flips the first card and second card
.
.
.
n) At the last step Oriol flips all the cards
Let $s_0, s_1, s_2, \dots, s_n$ be the sum of the numbers seen in the cards at the beggining, after the first step, after the second step, $\dots$ after the last step, respectively.
a) Find the greatest integer $k$ such that, no matter the initial card configuration, there exists at least $k$ distinct numbers between $s_0, s_1, \dots, s_n$.
b) Find all positive integers $m$ such that, for each initial card configuration, there exists an index $r$ such that $s_r = m$.
[i]Proposed by Dorlir Ahmeti[/i]
2014 Canadian Mathematical Olympiad Qualification, 8
For any given non-negative integer $m$, let $f(m)$ be the number of $1$'s in the base $2$ representation of $m$. Let $n$ be a positive integer. Prove that the integer $$\sum^{2^n - 1}_{m = 0} \Big( (-1)^{f(m)} \cdot 2^m \Big)$$ contains at least $n!$ positive divisors.
2017 Estonia Team Selection Test, 5
The leader of an IMO team chooses positive integers $n$ and $k$ with $n > k$, and announces them to the deputy leader and a contestant. The leader then secretly tells the deputy leader an $n$-digit binary string, and the deputy leader writes down all $n$-digit binary strings which differ from the leader’s in exactly $k$ positions. (For example, if $n = 3$ and $k = 1$, and if the leader chooses $101$, the deputy leader would write down $001, 111$ and $100$.) The contestant is allowed to look at the strings written by the deputy leader and guess the leader’s string. What is the minimum number of guesses (in terms of $n$ and $k$) needed to guarantee the correct answer?
2017 Taiwan TST Round 1, 2
The leader of an IMO team chooses positive integers $n$ and $k$ with $n > k$, and announces them to the deputy leader and a contestant. The leader then secretly tells the deputy leader an $n$-digit binary string, and the deputy leader writes down all $n$-digit binary strings which differ from the leader’s in exactly $k$ positions. (For example, if $n = 3$ and $k = 1$, and if the leader chooses $101$, the deputy leader would write down $001, 111$ and $100$.) The contestant is allowed to look at the strings written by the deputy leader and guess the leader’s string. What is the minimum number of guesses (in terms of $n$ and $k$) needed to guarantee the correct answer?
1991 Spain Mathematical Olympiad, 5
For a positive integer $n$, let $s(n)$ denote the sum of the binary digits of $n$. Find the sum $s(1)+s(2)+s(3)+...+s(2^k)$ for each positive integer $k$.
1981 Putnam, B5
Let $B(n)$ be the number of ones in the base two expression for the positive integer $n.$ Determine whether
$$\exp \left( \sum_{n=1}^{\infty} \frac{ B(n)}{n(n+1)} \right)$$
is a rational number.
2021 Miklós Schweitzer, 7
If the binary representations of the positive integers $k$ and $n$ are $k = \sum_{i=0}^{\infty} k_i 2^i$ and $n = \sum_{i=0}^{\infty} n_i 2^i$, then the logical sum of these numbers is
\[ k \oplus n =\sum_{i=0}^{\infty} |k_i-n_i|2^i. \]
Let $N$ be an arbitrary positive integer and $(c_k)_{k \in \mathbb{N}}$ be a sequence of complex numbers such that for all $k \in \mathbb{N}$, $ |c_k| \le 1$. Prove that there exist positive constants $C$ and $\delta$ such that
\[ \int_{[-\pi,\pi] \times [-\pi, \pi]} \sup_{n<N, n \in \mathbb{N}} \frac{1}{N} \Big| \sum_{k=1}^{n} c_k e^{i(kx+(k \oplus n) y)} \Big| \mathrm d(x,y) \le C \cdot N^{-\delta} \]
holds.
Russian TST 2017, P1
The leader of an IMO team chooses positive integers $n$ and $k$ with $n > k$, and announces them to the deputy leader and a contestant. The leader then secretly tells the deputy leader an $n$-digit binary string, and the deputy leader writes down all $n$-digit binary strings which differ from the leader’s in exactly $k$ positions. (For example, if $n = 3$ and $k = 1$, and if the leader chooses $101$, the deputy leader would write down $001, 111$ and $100$.) The contestant is allowed to look at the strings written by the deputy leader and guess the leader’s string. What is the minimum number of guesses (in terms of $n$ and $k$) needed to guarantee the correct answer?
2019 PUMaC Combinatorics B, 4
Keith has $10$ coins labeled $1$ through $10$, where the $i$th coin has weight $2^i$. The coins are all fair, so the probability of flipping heads on any of the coins is $\tfrac{1}{2}$. After flipping all of the coins, Keith takes all of the coins which land heads and measures their total weight, $W$. If the probability that $137\le W\le 1061$ is $\tfrac{m}{n}$ for coprime positive integers $m,n$, determine $m+n$.
2017 Germany Team Selection Test, 1
The leader of an IMO team chooses positive integers $n$ and $k$ with $n > k$, and announces them to the deputy leader and a contestant. The leader then secretly tells the deputy leader an $n$-digit binary string, and the deputy leader writes down all $n$-digit binary strings which differ from the leader’s in exactly $k$ positions. (For example, if $n = 3$ and $k = 1$, and if the leader chooses $101$, the deputy leader would write down $001, 111$ and $100$.) The contestant is allowed to look at the strings written by the deputy leader and guess the leader’s string. What is the minimum number of guesses (in terms of $n$ and $k$) needed to guarantee the correct answer?
2017 Peru IMO TST, 8
The leader of an IMO team chooses positive integers $n$ and $k$ with $n > k$, and announces them to the deputy leader and a contestant. The leader then secretly tells the deputy leader an $n$-digit binary string, and the deputy leader writes down all $n$-digit binary strings which differ from the leader’s in exactly $k$ positions. (For example, if $n = 3$ and $k = 1$, and if the leader chooses $101$, the deputy leader would write down $001, 111$ and $100$.) The contestant is allowed to look at the strings written by the deputy leader and guess the leader’s string. What is the minimum number of guesses (in terms of $n$ and $k$) needed to guarantee the correct answer?
2017 Azerbaijan BMO TST, 4
The leader of an IMO team chooses positive integers $n$ and $k$ with $n > k$, and announces them to the deputy leader and a contestant. The leader then secretly tells the deputy leader an $n$-digit binary string, and the deputy leader writes down all $n$-digit binary strings which differ from the leader’s in exactly $k$ positions. (For example, if $n = 3$ and $k = 1$, and if the leader chooses $101$, the deputy leader would write down $001, 111$ and $100$.) The contestant is allowed to look at the strings written by the deputy leader and guess the leader’s string. What is the minimum number of guesses (in terms of $n$ and $k$) needed to guarantee the correct answer?
2017 Brazil Team Selection Test, 1
The leader of an IMO team chooses positive integers $n$ and $k$ with $n > k$, and announces them to the deputy leader and a contestant. The leader then secretly tells the deputy leader an $n$-digit binary string, and the deputy leader writes down all $n$-digit binary strings which differ from the leader’s in exactly $k$ positions. (For example, if $n = 3$ and $k = 1$, and if the leader chooses $101$, the deputy leader would write down $001, 111$ and $100$.) The contestant is allowed to look at the strings written by the deputy leader and guess the leader’s string. What is the minimum number of guesses (in terms of $n$ and $k$) needed to guarantee the correct answer?
2022 3rd Memorial "Aleksandar Blazhevski-Cane", P5
We say that a positive integer $n$ is [i]memorable[/i] if it has a binary representation with strictly more $1$'s than $0$'s (for example $25$ is memorable because $25=(11001)_{2}$ has more $1$'s than $0$'s). Are there infinitely many memorable perfect squares?
[i]Proposed by Nikola Velov[/i]
2017 Estonia Team Selection Test, 5
The leader of an IMO team chooses positive integers $n$ and $k$ with $n > k$, and announces them to the deputy leader and a contestant. The leader then secretly tells the deputy leader an $n$-digit binary string, and the deputy leader writes down all $n$-digit binary strings which differ from the leader’s in exactly $k$ positions. (For example, if $n = 3$ and $k = 1$, and if the leader chooses $101$, the deputy leader would write down $001, 111$ and $100$.) The contestant is allowed to look at the strings written by the deputy leader and guess the leader’s string. What is the minimum number of guesses (in terms of $n$ and $k$) needed to guarantee the correct answer?
2023 Tuymaada Olympiad, 2
Serge and Tanya want to show Masha a magic trick. Serge leaves the room. Masha writes down a sequence $(a_1, a_2, \ldots , a_n)$, where all $a_k$ equal $0$ or $1$. After that Tanya writes down a sequence $(b_1, b_2, \ldots , b_n)$, where all $b_k$ also equal $0$ or $1$. Then Masha either does nothing or says “Mutabor” and replaces both sequences: her own sequence by $(a_n, a_{n-1}, \ldots , a_1)$, and Tanya’s sequence by $(1 - b_n, 1 - b_{n-1}, \ldots , 1 - b_1)$. Masha’s sequence is covered by a napkin, and Serge is invited to the room. Serge should look at Tanya’s sequence and tell the sequence covered by the napkin. For what $n$ Serge and Tanya can prepare and show such a trick? Serge does not have to determine whether the word “Mutabor” has been pronounced.
1995 Nordic, 2
Messages are coded using sequences consisting of zeroes and ones only. Only sequences with at most two consecutive ones or zeroes are allowed. (For instance the sequence $011001$ is allowed, but $011101$ is not.) Determine the number of sequences consisting of exactly $12$ numbers.