This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 167

2014 VJIMC, Problem 3

Let $k$ be a positive even integer. Show that $$\sum_{n=0}^{k/2}(-1)^n\binom{k+2}n\binom{2(k-n)+1}{k+1}=\frac{(k+1)(k+2)}2.$$

2014 Balkan MO Shortlist, C3

Let $n$ be a positive integer. A regular hexagon with side length $n$ is divided into equilateral triangles with side length $1$ by lines parallel to its sides. Find the number of regular hexagons all of whose vertices are among the vertices of those equilateral triangles. [i]UK - Sahl Khan[/i]

2025 Romania EGMO TST, P4

How does one show $$\text{lcm}\left(\binom{n}{1},\binom{n}{2},\ldots,\binom{n}{n}\right)=\frac{\text{lcm}(1,2,\ldots,n+1)}{n+1}$$

2012 ELMO Shortlist, 8

Fix two positive integers $a,k\ge2$, and let $f\in\mathbb{Z}[x]$ be a nonconstant polynomial. Suppose that for all sufficiently large positive integers $n$, there exists a rational number $x$ satisfying $f(x)=f(a^n)^k$. Prove that there exists a polynomial $g\in\mathbb{Q}[x]$ such that $f(g(x))=f(x)^k$ for all real $x$. [i]Victor Wang.[/i]

2020 Switzerland Team Selection Test, 11

The infinite sequence $a_0,a _1, a_2, \dots$ of (not necessarily distinct) integers has the following properties: $0\le a_i \le i$ for all integers $i\ge 0$, and \[\binom{k}{a_0} + \binom{k}{a_1} + \dots + \binom{k}{a_k} = 2^k\] for all integers $k\ge 0$. Prove that all integers $N\ge 0$ occur in the sequence (that is, for all $N\ge 0$, there exists $i\ge 0$ with $a_i=N$).

1974 IMO Longlists, 36

Consider the binomial coefficients $\binom{n}{k}=\frac{n!}{k!(n-k)!}\ (k=1,2,\ldots n-1)$. Determine all positive integers $n$ for which $\binom{n}{1},\binom{n}{2},\ldots ,\binom{n}{n-1}$ are all even numbers.

1999 IMO Shortlist, 1

Let $n \geq 1$ be an integer. A [b]path[/b] from $(0,0)$ to $(n,n)$ in the $xy$ plane is a chain of consecutive unit moves either to the right (move denoted by $E$) or upwards (move denoted by $N$), all the moves being made inside the half-plane $x \geq y$. A [b]step[/b] in a path is the occurence of two consecutive moves of the form $EN$. Show that the number of paths from $(0,0)$ to $(n,n)$ that contain exactly $s$ steps $(n \geq s \geq 1)$ is \[\frac{1}{s} \binom{n-1}{s-1} \binom{n}{s-1}.\]

2012 Iran Team Selection Test, 2

The function $f:\mathbb R^{\ge 0} \longrightarrow \mathbb R^{\ge 0}$ satisfies the following properties for all $a,b\in \mathbb R^{\ge 0}$: [b]a)[/b] $f(a)=0 \Leftrightarrow a=0$ [b]b)[/b] $f(ab)=f(a)f(b)$ [b]c)[/b] $f(a+b)\le 2 \max \{f(a),f(b)\}$. Prove that for all $a,b\in \mathbb R^{\ge 0}$ we have $f(a+b)\le f(a)+f(b)$. [i]Proposed by Masoud Shafaei[/i]

1985 IMO, 3

For any polynomial $P(x)=a_0+a_1x+\ldots+a_kx^k$ with integer coefficients, the number of odd coefficients is denoted by $o(P)$. For $i-0,1,2,\ldots$ let $Q_i(x)=(1+x)^i$. Prove that if $i_1,i_2,\ldots,i_n$ are integers satisfying $0\le i_1<i_2<\ldots<i_n$, then: \[ o(Q_{i_1}+Q_{i_2}+\ldots+Q_{i_n})\ge o(Q_{i_1}). \]

2020 Brazil Team Selection Test, 1

The infinite sequence $a_0,a _1, a_2, \dots$ of (not necessarily distinct) integers has the following properties: $0\le a_i \le i$ for all integers $i\ge 0$, and \[\binom{k}{a_0} + \binom{k}{a_1} + \dots + \binom{k}{a_k} = 2^k\] for all integers $k\ge 0$. Prove that all integers $N\ge 0$ occur in the sequence (that is, for all $N\ge 0$, there exists $i\ge 0$ with $a_i=N$).

2008 Germany Team Selection Test, 2

For every integer $ k \geq 2,$ prove that $ 2^{3k}$ divides the number \[ \binom{2^{k \plus{} 1}}{2^{k}} \minus{} \binom{2^{k}}{2^{k \minus{} 1}} \] but $ 2^{3k \plus{} 1}$ does not. [i]Author: Waldemar Pompe, Poland[/i]

2020 Thailand TST, 1

The infinite sequence $a_0,a _1, a_2, \dots$ of (not necessarily distinct) integers has the following properties: $0\le a_i \le i$ for all integers $i\ge 0$, and \[\binom{k}{a_0} + \binom{k}{a_1} + \dots + \binom{k}{a_k} = 2^k\] for all integers $k\ge 0$. Prove that all integers $N\ge 0$ occur in the sequence (that is, for all $N\ge 0$, there exists $i\ge 0$ with $a_i=N$).

2020 Jozsef Wildt International Math Competition, W28

For positive integers $j\le n$, prove that $$\sum_{k=j}^n\binom{2n}{2k}\binom kj=\frac{n\cdot4^{n-j}}j\binom{2n-j-1}{j-1}.$$ [i]Proposed by Ángel Plaza[/i]

2003 Poland - Second Round, 1

Prove that exists integer $n > 2003$ that in sequence $\binom{n}{0}$, $\binom{n}{1}$, $\binom{n}{2}$, ..., $\binom{n}{2003}$ each element is a divisor of all elements which are after him.

1979 Romania Team Selection Tests, 6.

If $n>2$ is a positive integer, compute \[\max_{1\leqslant k\leqslant n}\max_{n_1+...+n_k=n} \binom{n_1}{2}\binom{n_2}{2}\ldots\binom{n_k}{2}.\] [i]Ioan Tomescu[/i]

1976 AMC 12/AHSME, 23

For integers $k$ and $n$ such that $1\le k<n$, let $C^n_k=\frac{n!}{k!(n-k)!}$. Then $\left(\frac{n-2k-1}{k+1}\right)C^n_k$ is an integer $\textbf{(A) }\text{for all }k\text{ and }n\qquad$ $\textbf{(B) }\text{for all even values of }k\text{ and }n,\text{ but not for all }k\text{ and }n\qquad$ $\textbf{(C) }\text{for all odd values of }k\text{ and }n,\text{ but not for all }k\text{ and }n\qquad$ $\textbf{(D) }\text{if }k=1\text{ or }n-1,\text{ but not for all odd values }k\text{ and }n\qquad$ $\textbf{(E) }\text{if }n\text{ is divisible by }k,\text{ but not for all even values }k\text{ and }n$

2012 IMO Shortlist, N3

Determine all integers $m \geq 2$ such that every $n$ with $\frac{m}{3} \leq n \leq \frac{m}{2}$ divides the binomial coefficient $\binom{n}{m-2n}$.

2021 USA TSTST, 3

Find all positive integers $k > 1$ for which there exists a positive integer $n$ such that $\tbinom{n}{k}$ is divisible by $n$, and $\tbinom{n}{m}$ is not divisible by $n$ for $2\leq m < k$. [i]Merlijn Staps[/i]

2020 Estonia Team Selection Test, 1

The infinite sequence $a_0,a _1, a_2, \dots$ of (not necessarily distinct) integers has the following properties: $0\le a_i \le i$ for all integers $i\ge 0$, and \[\binom{k}{a_0} + \binom{k}{a_1} + \dots + \binom{k}{a_k} = 2^k\] for all integers $k\ge 0$. Prove that all integers $N\ge 0$ occur in the sequence (that is, for all $N\ge 0$, there exists $i\ge 0$ with $a_i=N$).

1970 Polish MO Finals, 3

Prove that an integer $n > 1$ is a prime number if and only if, for every integer $k$ with $1\le k \le n-1$, the binomial coefficient $n \choose k$ is divisible by $n$.

2012 Purple Comet Problems, 12

Ted flips seven fair coins. there are relatively prime positive integers $m$ and $n$ so that $\frac{m}{n}$ is the probability that Ted flips at least two heads given that he flips at least three tails. Find $m+n$.

1998 IMO Shortlist, 4

For any two nonnegative integers $n$ and $k$ satisfying $n\geq k$, we define the number $c(n,k)$ as follows: - $c\left(n,0\right)=c\left(n,n\right)=1$ for all $n\geq 0$; - $c\left(n+1,k\right)=2^{k}c\left(n,k\right)+c\left(n,k-1\right)$ for $n\geq k\geq 1$. Prove that $c\left(n,k\right)=c\left(n,n-k\right)$ for all $n\geq k\geq 0$.

2015 BMT Spring, 7

Evaluate $\sum_{k=0}^{37}(-1)^k\binom{75}{2k}$.

1974 Polish MO Finals, 5

Prove that for any natural numbers $n,r$ with $r + 3 \le n $the binomial coefficients $n \choose r$, $n \choose r+1$, $n \choose r+2 $, $n \choose r+3 $ cannot be successive terms of an arithmetic progression.

2021 USA TSTST, 9

Let $q=p^r$ for a prime number $p$ and positive integer $r$. Let $\zeta = e^{\frac{2\pi i}{q}}$. Find the least positive integer $n$ such that \[\sum_{\substack{1\leq k\leq q\\ \gcd(k,p)=1}} \frac{1}{(1-\zeta^k)^n}\] is not an integer. (The sum is over all $1\leq k\leq q$ with $p$ not dividing $k$.) [i]Victor Wang[/i]