This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 88

2012 Finnish National High School Mathematics Competition, 3

Prove that for all integers $k\geq 2,$ the number $k^{k-1}-1$ is divisible by $(k-1)^2.$

1975 AMC 12/AHSME, 5

The polynomial $ (x\plus{}y)^9$ is expanded in decreasing powers of $ x$. The second and third terms have equal values when evaluated at $ x\equal{}p$ and $ y\equal{}q$, where $ p$ and $ q$ are positive numbers whose sum is one. What is the value of $ p$? $ \textbf{(A)}\ 1/5 \qquad \textbf{(B)}\ 4/5 \qquad \textbf{(C)}\ 1/4 \qquad \textbf{(D)}\ 3/4 \qquad \textbf{(E)}\ 8/9$

1992 AMC 12/AHSME, 29

An "unfair" coin has a $2/3$ probability of turning up heads. If this coin is tossed $50$ times, what is the probability that the total number of heads is even? $ \textbf{(A)}\ 25\left(\frac{2}{3}\right)^{50}\qquad\textbf{(B)}\ \frac{1}{2}\left(1 - \frac{1}{3^{50}}\right)\qquad\textbf{(C)}\ \frac{1}{2}\qquad\textbf{(D)}\ \frac{1}{2}\left(1 + \frac{1}{3^{50}}\right)\qquad\textbf{(E)}\ \frac{2}{3} $

2009 AMC 10, 6

Kiana has two older twin brothers. The product of their ages is $ 128$. What is the sum of their three ages? $ \textbf{(A)}\ 10\qquad \textbf{(B)}\ 12\qquad \textbf{(C)}\ 16\qquad \textbf{(D)}\ 18\qquad \textbf{(E)}\ 24$

2014 USAJMO, 1

Let $a$, $b$, $c$ be real numbers greater than or equal to $1$. Prove that \[ \min \left(\frac{10a^2-5a+1}{b^2-5b+10},\frac{10b^2-5b+1}{c^2-5c+10},\frac{10c^2-5c+1}{a^2-5a+10}\right )\leq abc. \]

1950 AMC 12/AHSME, 16

The number of terms in the expansion of $ [(a\plus{}3b)^2(a\minus{}3b)^2]^2$ when simplified is: $\textbf{(A)}\ 4\qquad \textbf{(B)}\ 5 \qquad \textbf{(C)}\ 6 \qquad \textbf{(D)}\ 7 \qquad \textbf{(E)}\ 8$

1988 IMO Longlists, 76

A positive integer is called a [b]double number[/b] if its decimal representation consists of a block of digits, not commencing with 0, followed immediately by an identical block. So, for instance, 360360 is a double number, but 36036 is not. Show that there are infinitely many double numbers which are perfect squares.

1990 India Regional Mathematical Olympiad, 4

Find the remainder when $2^{1990}$ is divided by $1990.$

1969 AMC 12/AHSME, 16

When $(a-b)^n$, $n\geq 2$, $ab\neq 0$, is expanded by the binomial theorem, it is found that , when $a=kb$, where $k$ is a positive integer, the sum of the second and third terms is zero. Then $n$ equals: $\textbf{(A) }\tfrac12k(k-1)\qquad \textbf{(B) }\tfrac12k(k+1)\qquad \textbf{(C) }2k-1\qquad \textbf{(D) }2k\qquad \textbf{(E) }2k+1$

2008 Alexandru Myller, 2

There are no integers $ a,b,c $ that satisfy $ \left( a+b\sqrt{-3}\right)^{17}=c+\sqrt{-3} . $ [i]Dorin Andrica, Mihai Piticari[/i]

1994 AMC 12/AHSME, 21

Find the number of counter examples to the statement: \[``\text{If N is an odd positive integer the sum of whose digits is 4 and none of whose digits is 0, then N is prime}."\] $ \textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ 4 $

2003 Iran MO (3rd Round), 17

A simple calculator is given to you. (It contains 8 digits and only does the operations +,-,*,/,$ \sqrt{\mbox{}}$) How can you find $ 3^{\sqrt{2}}$ with accuracy of 6 digits.

2013 IMO Shortlist, A2

Prove that in any set of $2000$ distinct real numbers there exist two pairs $a>b$ and $c>d$ with $a \neq c$ or $b \neq d $, such that \[ \left| \frac{a-b}{c-d} - 1 \right|< \frac{1}{100000}. \]

2009 AMC 12/AHSME, 5

Kiana has two older twin brothers. The product of their ages is $ 128$. What is the sum of their three ages? $ \textbf{(A)}\ 10\qquad \textbf{(B)}\ 12\qquad \textbf{(C)}\ 16\qquad \textbf{(D)}\ 18\qquad \textbf{(E)}\ 24$

2003 China Team Selection Test, 3

Let $ \left(x_{n}\right)$ be a real sequence satisfying $ x_{0}=0$, $ x_{2}=\sqrt[3]{2}x_{1}$, and $ x_{n+1}=\frac{1}{\sqrt[3]{4}}x_{n}+\sqrt[3]{4}x_{n-1}+\frac{1}{2}x_{n-2}$ for every integer $ n\geq 2$, and such that $ x_{3}$ is a positive integer. Find the minimal number of integers belonging to this sequence.

2000 AIME Problems, 9

The system of equations \begin{eqnarray*}\log_{10}(2000xy) - (\log_{10}x)(\log_{10}y) & = & 4 \\ \log_{10}(2yz) - (\log_{10}y)(\log_{10}z) & = & 1 \\ \log_{10}(zx) - (\log_{10}z)(\log_{10}x) & = & 0 \\ \end{eqnarray*} has two solutions $ (x_{1},y_{1},z_{1})$ and $ (x_{2},y_{2},z_{2}).$ Find $ y_{1} + y_{2}.$

2000 Federal Competition For Advanced Students, Part 2, 1

The sequence an is defined by $a_0 = 4, a_1 = 1$ and the recurrence formula $a_{n+1} = a_n + 6a_{n-1}$. The sequence $b_n$ is given by \[b_n=\sum_{k=0}^n \binom nk a_k.\] Find the coefficients $\alpha,\beta$ so that $b_n$ satisfies the recurrence formula $b_{n+1} = \alpha b_n + \beta b_{n-1}$. Find the explicit form of $b_n$.

2014 India IMO Training Camp, 1

Prove that in any set of $2000$ distinct real numbers there exist two pairs $a>b$ and $c>d$ with $a \neq c$ or $b \neq d $, such that \[ \left| \frac{a-b}{c-d} - 1 \right|< \frac{1}{100000}. \]

2023 CCA Math Bonanza, T7

The positive integer equal to the expression \[ \sum_{i=0}^{9} \left(i+(-9)^i\right)8^{9-i} \binom{9}{i}\] is divisible by exactly six distinct primes. Find the sum of these six distinct prime factors. [i]Team #7[/i]

1985 IMO Longlists, 88

Determine the range of $w(w + x)(w + y)(w + z)$, where $x, y, z$, and $w$ are real numbers such that \[x + y + z + w = x^7 + y^7 + z^7 + w^7 = 0.\]

1990 Spain Mathematical Olympiad, 3

Prove that $ \lfloor{(4+\sqrt11)^{n}}\rfloor $ is odd for every natural number n.

2002 Putnam, 6

Let $p$ be a prime number. Prove that the determinant of the matrix \[ \begin{bmatrix}x & y & z\\ x^p & y^p & z^p \\ x^{p^2} & y^{p^2} & z^{p^2} \end{bmatrix} \] is congruent modulo $p$ to a product of polynomials of the form $ax+by+cz$, where $a$, $b$, and $c$ are integers. (We say two integer polynomials are congruent modulo $p$ if corresponding coefficients are congruent modulo $p$.)

1989 Canada National Olympiad, 3

Define $ \{ a_n \}_{n\equal{}1}$ as follows: $ a_1 \equal{} 1989^{1989}; \ a_n, n > 1,$ is the sum of the digits of $ a_{n\minus{}1}$. What is the value of $ a_5$?

1991 IMO Shortlist, 18

Find the highest degree $ k$ of $ 1991$ for which $ 1991^k$ divides the number \[ 1990^{1991^{1992}} \plus{} 1992^{1991^{1990}}.\]

2007 Harvard-MIT Mathematics Tournament, 8

Suppose that $\omega$ is a primitive $2007^{\text{th}}$ root of unity. Find $\left(2^{2007}-1\right)\displaystyle\sum_{j=1}^{2006}\dfrac{1}{2-\omega^j}$.