This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 88

1986 AIME Problems, 11

The polynomial $1-x+x^2-x^3+\cdots+x^{16}-x^{17}$ may be written in the form $a_0+a_1y+a_2y^2+\cdots +a_{16}y^{16}+a_{17}y^{17}$, where $y=x+1$ and thet $a_i$'s are constants. Find the value of $a_2$.

1977 AMC 12/AHSME, 10

If $(3x-1)^7 = a_7x^7 + a_6x^6 + \cdots + a_0$, then $a_7 + a_6 + \cdots + a_0$ equals \[ \text{(A)}\ 0 \qquad \text{(B)}\ 1 \qquad \text{(C)}\ 64 \qquad \text{(D)}\ -64 \qquad \text{(E)}\ 128 \]

2003 China Team Selection Test, 3

Let $ \left(x_{n}\right)$ be a real sequence satisfying $ x_{0}=0$, $ x_{2}=\sqrt[3]{2}x_{1}$, and $ x_{n+1}=\frac{1}{\sqrt[3]{4}}x_{n}+\sqrt[3]{4}x_{n-1}+\frac{1}{2}x_{n-2}$ for every integer $ n\geq 2$, and such that $ x_{3}$ is a positive integer. Find the minimal number of integers belonging to this sequence.

2012 Iran MO (3rd Round), 3

Prove that if $n$ is large enough, among any $n$ points of plane we can find $1000$ points such that these $1000$ points have pairwise distinct distances. Can you prove the assertion for $n^{\alpha}$ where $\alpha$ is a positive real number instead of $1000$?

2017 India National Olympiad, 6

Let $n\ge 1$ be an integer and consider the sum $$x=\sum_{k\ge 0} \dbinom{n}{2k} 2^{n-2k}3^k=\dbinom{n}{0}2^n+\dbinom{n}{2}2^{n-2}\cdot{}3+\dbinom{n}{4}2^{n-k}\cdot{}3^2 + \cdots{}.$$ Show that $2x-1,2x,2x+1$ form the sides of a triangle whose area and inradius are also integers.

1988 IMO Shortlist, 25

A positive integer is called a [b]double number[/b] if its decimal representation consists of a block of digits, not commencing with 0, followed immediately by an identical block. So, for instance, 360360 is a double number, but 36036 is not. Show that there are infinitely many double numbers which are perfect squares.

2001 Manhattan Mathematical Olympiad, 4

How many digits has the number $2^{100}$?

1962 Putnam, B1

Let $x^{(n)}=x(x-1)\cdots (x-n+1)$ for $n$ a positive integer and let $x^{(0)}=1.$ Prove that $$(x+y)^{(n)}= \sum_{k=0}^{n} \binom{n}{k} x^{(k)} y^{(n-k)}.$$

2010 AMC 12/AHSME, 21

Let $ a>0$, and let $ P(x)$ be a polynomial with integer coefficients such that \[ P(1)\equal{}P(3)\equal{}P(5)\equal{}P(7)\equal{}a\text{, and}\] \[ P(2)\equal{}P(4)\equal{}P(6)\equal{}P(8)\equal{}\minus{}a\text{.}\] What is the smallest possible value of $ a$? $ \textbf{(A)}\ 105 \qquad \textbf{(B)}\ 315 \qquad \textbf{(C)}\ 945 \qquad \textbf{(D)}\ 7! \qquad \textbf{(E)}\ 8!$

2003 AMC 8, 4

A group of children riding on bicycles and tricycles rode past Billy Bob's house. Billy Bob counted $7$ children and $19$ wheels. How many tricycles were there? $\textbf{(A)}\ 2 \qquad \textbf{(B)}\ 4 \qquad \textbf{(C)}\ 5 \qquad \textbf{(D)}\ 6 \qquad \textbf{(E)}\ 7$

2014 Taiwan TST Round 2, 4

Prove that in any set of $2000$ distinct real numbers there exist two pairs $a>b$ and $c>d$ with $a \neq c$ or $b \neq d $, such that \[ \left| \frac{a-b}{c-d} - 1 \right|< \frac{1}{100000}. \]

2014 Online Math Open Problems, 30

Let $p = 2^{16}+1$ be an odd prime. Define $H_n = 1+ \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n}$. Compute the remainder when \[ (p-1)! \sum_{n = 1}^{p-1} H_n \cdot 4^n \cdot \binom{2p-2n}{p-n} \] is divided by $p$. [i]Proposed by Yang Liu[/i]

2002 Balkan MO, 2

Let the sequence $ \{a_n\}_{n\geq 1}$ be defined by $ a_1 \equal{} 20$, $ a_2 \equal{} 30$ and $ a_{n \plus{} 2} \equal{} 3a_{n \plus{} 1} \minus{} a_n$ for all $ n\geq 1$. Find all positive integers $ n$ such that $ 1 \plus{} 5a_n a_{n \plus{} 1}$ is a perfect square.

2012 National Olympiad First Round, 8

In how many different ways can one select two distinct subsets of the set $\{1,2,3,4,5,6,7\}$, so that one includes the other? $ \textbf{(A)}\ 2059 \qquad \textbf{(B)}\ 2124 \qquad \textbf{(C)}\ 2187 \qquad \textbf{(D)}\ 2315 \qquad \textbf{(E)}\ 2316$

2006 AMC 12/AHSME, 24

The expression \[ (x \plus{} y \plus{} z)^{2006} \plus{} (x \minus{} y \minus{} z)^{2006} \]is simplified by expanding it and combining like terms. How many terms are in the simplified expression? $ \textbf{(A) } 6018 \qquad \textbf{(B) } 671,676 \qquad \textbf{(C) } 1,007,514 \qquad \textbf{(D) } 1,008,016 \qquad \textbf{(E) } 2,015,028$

2001 National High School Mathematics League, 5

If $(1+x+x^2)^{1000}=a_0+a_1x+a_2x^2+\cdots+a_{2000}x^{2000}$ ($a_0,a_1,\cdots,a_{2000}$ are coefficients), then the value of $a_0+a_3+a_6+\cdots+a_{1998}$ is $\text{(A)}3^{333}\qquad\text{(B)}3^{666}\qquad\text{(C)}3^{999}\qquad\text{(D)}3^{2001}$

2010 Stanford Mathematics Tournament, 8

Let $P(x)$ be a polynomial of degree $n$ such that $P(x)=3^k$ for $0\le k \le n$. Find $P(n+1)$

2002 USA Team Selection Test, 2

Let $p>5$ be a prime number. For any integer $x$, define \[{f_p}(x) = \sum_{k=1}^{p-1} \frac{1}{(px+k)^2}\] Prove that for any pair of positive integers $x$, $y$, the numerator of $f_p(x) - f_p(y)$, when written as a fraction in lowest terms, is divisible by $p^3$.

2010 Stanford Mathematics Tournament, 10

Compute the base 10 value of $14641_{99}$

2002 National Olympiad First Round, 11

What is the coefficient of $x^5$ in the expansion of $(1 + x + x^2)^9$? $ \textbf{a)}\ 1680 \qquad\textbf{b)}\ 882 \qquad\textbf{c)}\ 729 \qquad\textbf{d)}\ 450 \qquad\textbf{e)}\ 246 $

1999 Romania Team Selection Test, 7

Prove that for any integer $n$, $n\geq 3$, there exist $n$ positive integers $a_1,a_2,\ldots,a_n$ in arithmetic progression, and $n$ positive integers in geometric progression $b_1,b_2,\ldots,b_n$ such that \[ b_1 < a_1 < b_2 < a_2 <\cdots < b_n < a_n . \] Give an example of two such progressions having at least five terms. [i]Mihai Baluna[/i]

1969 IMO Longlists, 61

$(SWE 4)$ Let $a_0, a_1, a_2, \cdots$ be determined with $a_0 = 0, a_{n+1} = 2a_n + 2^n$. Prove that if $n$ is power of $2$, then so is $a_n$

1987 AIME Problems, 12

Let $m$ be the smallest integer whose cube root is of the form $n+r$, where $n$ is a positive integer and $r$ is a positive real number less than $1/1000$. Find $n$.

2000 Hungary-Israel Binational, 2

Prove or disprove: For any positive integer $k$ there exists an integer $n > 1$ such that the binomial coeffcient $\binom{n}{i}$ is divisible by $k$ for any $1 \leq i \leq n-1.$

1971 AMC 12/AHSME, 13

If $(1.0025)^{10}$ is evaluated correct to $5$ decimal places, then the digit in the fifth decimal place is $\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }5\qquad \textbf{(E) }8$