This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3

2021 Regional Olympiad of Mexico Center Zone, 4

Two types of pieces, bishops and rooks, are to be placed on a $10\times 10$ chessboard (without necessarily filling it) such that each piece occupies exactly one square of the board. A bishop $B$ is said to [i]attack[/i] a piece $P$ if $B$ and $P$ are on the same diagonal and there are no pieces between $B$ and $P$ on that diagonal; a rook $R$ is said to attack a piece $P$ if $R$ and $P$ are on the same row or column and there are no pieces between $R$ and $P$ on that row or column. A piece $P$ is [i]chocolate[/i] if no other piece $Q$ attacks $P$. What is the maximum number of chocolate pieces there may be, after placing some pieces on the chessboard? [i]Proposed by José Alejandro Reyes González[/i]

1975 Bulgaria National Olympiad, Problem 5

Let the [i]subbishop[/i] (a bishop is the figure moving only by a diagonal) be a figure moving only by diagonal but only in the next cells (squares) of the chessboard. Find the maximal count of subbishops over a chessboard $n\times n$, no two of which are not attacking. [i]V. Chukanov[/i]

2024 Romanian Master of Mathematics, 1

Let $n$ be a positive integer. Initially, a bishop is placed in each square of the top row of a $2^n \times 2^n$ chessboard; those bishops are numbered from $1$ to $2^n$ from left to right. A [i]jump[/i] is a simultaneous move made by all bishops such that each bishop moves diagonally, in a straight line, some number of squares, and at the end of the jump, the bishops all stand in different squares of the same row. Find the total number of permutations $\sigma$ of the numbers $1, 2, \ldots, 2^n$ with the following property: There exists a sequence of jumps such that all bishops end up on the bottom row arranged in the order $\sigma(1), \sigma(2), \ldots, \sigma(2^n)$, from left to right. [i]Israel[/i]