This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 247

2020 Greece Team Selection Test, 4

Let $a$ and $b$ be two positive integers. Prove that the integer \[a^2+\left\lceil\frac{4a^2}b\right\rceil\] is not a square. (Here $\lceil z\rceil$ denotes the least integer greater than or equal to $z$.) [i]Russia[/i]

1995 IberoAmerican, 1

In a $m\times{n}$ grid are there are token. Every token [i]dominates [/i] every square on its same row ($\leftrightarrow$), its same column ($\updownarrow$), and diagonal ($\searrow\hspace{-4.45mm}\nwarrow$)(Note that the token does not \emph{dominate} the diagonal ($\nearrow\hspace{-4.45mm}\swarrow$), determine the lowest number of tokens that must be on the board to [i]dominate [/i] all the squares on the board.

1981 Bundeswettbewerb Mathematik, 4

Let $X$ be a non empty subset of $\mathbb{N} = \{1,2,\ldots \}$. Suppose that for all $x \in X$, $4x \in X$ and $\lfloor \sqrt{x} \rfloor \in X$. Prove that $X=\mathbb{N}$.

2014 NIMO Summer Contest, 6

Suppose $x$ is a random real number between $1$ and $4$, and $y$ is a random real number between $1$ and $9$. If the expected value of \[ \left\lceil \log_2 x \right\rceil - \left\lfloor \log_3 y \right\rfloor \] can be expressed as $\frac mn$ where $m$ and $n$ are relatively prime positive integers, compute $100m + n$. [i]Proposed by Lewis Chen[/i]

2012 Cono Sur Olympiad, 1

1. Around a circumference are written $2012$ number, each of with is equal to $1$ or $-1$. If there are not $10$ consecutive numbers that sum $0$, find all possible values of the sum of the $2012$ numbers.

2012 Iran MO (3rd Round), 4

We have $n$ bags each having $100$ coins. All of the bags have $10$ gram coins except one of them which has $9$ gram coins. We have a balance which can show weights of things that have weight of at most $1$ kilogram. At least how many times shall we use the balance in order to find the different bag? [i]Proposed By Hamidreza Ziarati[/i]

2012 China Team Selection Test, 2

Prove that there exists a positive real number $C$ with the following property: for any integer $n\ge 2$ and any subset $X$ of the set $\{1,2,\ldots,n\}$ such that $|X|\ge 2$, there exist $x,y,z,w \in X$(not necessarily distinct) such that \[0<|xy-zw|<C\alpha ^{-4}\] where $\alpha =\frac{|X|}{n}$.

2002 Czech-Polish-Slovak Match, 1

Let $a, b$ be distinct real numbers and $k,m$ be positive integers $k + m = n \ge 3, k \le 2m, m \le 2k$. Consider sequences $x_1,\dots , x_n$ with the following properties: (i) $k$ terms $x_i$, including $x_1$, are equal to $a$; (ii) $m$ terms $x_i$, including $x_n$, are equal to $b$; (iii) no three consecutive terms are equal. Find all possible values of $x_nx_1x_2 + x_1x_2x_3 + \cdots + x_{n-1}x_nx_1$.

2004 Pre-Preparation Course Examination, 1

A network is a simple directed graph such that each edge $ e$ has two intger lower and upper capacities $ 0\leq c_l(e)\leq c_u(e)$. A circular flow on this graph is a function such that: 1) For each edge $ e$, $ c_l(e)\leq f(e)\leq c_u(e)$. 2) For each vertex $ v$: \[ \sum_{e\in v^\plus{}}f(e)\equal{}\sum_{e\in v^\minus{}}f(e)\] a) Prove that this graph has a circular flow, if and only if for each partition $ X,Y$ of vertices of the network we have: \[ \sum_{\begin{array}{c}{e\equal{}xy}\\{x\in X,y\in Y}\end{array}} c_l(e)\leq \sum_{\begin{array}{c}{e\equal{}yx}\\{y\in Y,x\in X}\end{array}} c_l(e)\] b) Suppose that $ f$ is a circular flow in this network. Prove that there exists a circular flow $ g$ in this network such that $ g(e)\equal{}\lfloor f(e)\rfloor$ or $ g(e)\equal{}\lceil f(e)\rceil$ for each edge $ e$.

2011 China Team Selection Test, 2

Let $a_1,a_2,\ldots,a_n,\ldots$ be any permutation of all positive integers. Prove that there exist infinitely many positive integers $i$ such that $\gcd(a_i,a_{i+1})\leq \frac{3}{4} i$.

2012 China Second Round Olympiad, 4

Let $S_n=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}$, where $n$ is a positive integer. Prove that for any real numbers $a,b,0\le a\le b\le 1$, there exist infinite many $n\in\mathbb{N}$ such that \[a<S_n-[S_n]<b\] where $[x]$ represents the largest integer not exceeding $x$.

2011 Middle European Mathematical Olympiad, 4

Let $n \geq 3$ be an integer. At a MEMO-like competition, there are $3n$ participants, there are n languages spoken, and each participant speaks exactly three different languages. Prove that at least $\left\lceil\frac{2n}{9}\right\rceil$ of the spoken languages can be chosen in such a way that no participant speaks more than two of the chosen languages. [b]Note.[/b] $\lceil x\rceil$ is the smallest integer which is greater than or equal to $x$.

2014 JBMO TST - Turkey, 2

$3m$ balls numbered $1, 1, 1, 2, 2, 2, 3, 3, 3, \ldots, m, m, m$ are distributed into $8$ boxes so that any two boxes contain identical balls. Find the minimal possible value of $m$.

2010 Contests, 1

Let $S$ be a set of 100 integers. Suppose that for all positive integers $x$ and $y$ (possibly equal) such that $x + y$ is in $S$, either $x$ or $y$ (or both) is in $S$. Prove that the sum of the numbers in $S$ is at most 10,000.

2013 Middle European Mathematical Olympiad, 7

The numbers from 1 to $ 2013^2 $ are written row by row into a table consisting of $ 2013 \times 2013 $ cells. Afterwards, all columns and all rows containing at least one of the perfect squares $ 1, 4, 9, \cdots, 2013^2 $ are simultaneously deleted. How many cells remain?

2013 Putnam, 4

A finite collection of digits $0$ and $1$ is written around a circle. An [i]arc[/i] of length $L\ge 0$ consists of $L$ consecutive digits around the circle. For each arc $w,$ let $Z(w)$ and $N(w)$ denote the number of $0$'s in $w$ and the number of $1$'s in $w,$ respectively. Assume that $|Z(w)-Z(w')|\le 1$ for any two arcs $w,w'$ of the same length. Suppose that some arcs $w_1,\dots,w_k$ have the property that \[Z=\frac1k\sum_{j=1}^kZ(w_j)\text{ and }N=\frac1k\sum_{j=1}^k N(w_j)\] are both integers. Prove that there exists an arc $w$ with $Z(w)=Z$ and $N(w)=N.$

2013 NIMO Problems, 3

Bored in an infinitely long class, Evan jots down a fraction whose numerator and denominator are both $70$-character strings, as follows: \[ r = \frac{loooloolloolloololllloloollollolllloollloloolooololooolololooooollllol} {lolooloolollollolloooooloooloololloolllooollololoooollllooolollloloool}. \] If $o=2013$ and $l=\frac{1}{50}$, find $\lceil roll \rceil$. [i]Proposed by Evan Chen[/i]

2014 China National Olympiad, 3

For non-empty number sets $S, T$, define the sets $S+T=\{s+t\mid s\in S, t\in T\}$ and $2S=\{2s\mid s\in S\}$. Let $n$ be a positive integer, and $A, B$ be two non-empty subsets of $\{1,2\ldots,n\}$. Show that there exists a subset $D$ of $A+B$ such that 1) $D+D\subseteq 2(A+B)$, 2) $|D|\geq\frac{|A|\cdot|B|}{2n}$, where $|X|$ is the number of elements of the finite set $X$.

2013 Federal Competition For Advanced Students, Part 2, 1

For each pair $(a,b)$ of positive integers, determine all non-negative integers $n$ such that \[b+\left\lfloor{\frac{n}{a}}\right\rfloor=\left\lceil{\frac{n+b}{a}}\right\rceil.\]

2004 South East Mathematical Olympiad, 7

A tournament is held among $n$ teams, following such rules: a) every team plays all others once at home and once away.(i.e. double round-robin schedule) b) each team may participate in several away games in a week(from Sunday to Saturday). c) there is no away game arrangement for a team, if it has a home game in the same week. If the tournament finishes in 4 weeks, determine the maximum value of $n$.

2010 Contests, 3

The 2010 positive numbers $a_1, a_2, \ldots , a_{2010}$ satisfy the inequality $a_ia_j \le i+j$ for all distinct indices $i, j$. Determine, with proof, the largest possible value of the product $a_1a_2\ldots a_{2010}$.

1998 Greece JBMO TST, 5

Let $I$ be an open interval of length $\frac{1}{n}$, where $n$ is a positive integer. Find the maximum possible number of rational numbers of the form $\frac{a}{b}$ where $1 \le b \le n$ that lie in $I$.

2003 Germany Team Selection Test, 3

Let $N$ be a natural number and $x_1, \ldots , x_n$ further natural numbers less than $N$ and such that the least common multiple of any two of these $n$ numbers is greater than $N$. Prove that the sum of the reciprocals of these $n$ numbers is always less than $2$: $\sum^n_{i=1} \frac{1}{x_i} < 2.$

2009 AMC 12/AHSME, 21

Ten women sit in $ 10$ seats in a line. All of the $ 10$ get up and then reseat themselves using all $ 10$ seats, each sitting in the seat she was in before or a seat next to the one she occupied before. In how many ways can the women be reseated? $ \textbf{(A)}\ 89\qquad \textbf{(B)}\ 90\qquad \textbf{(C)}\ 120\qquad \textbf{(D)}\ 2^{10}\qquad \textbf{(E)}\ 2^2 3^8$

2009 Junior Balkan MO, 4

Each one of 2009 distinct points in the plane is coloured in blue or red, so that on every blue-centered unit circle there are exactly two red points. Find the gratest possible number of blue points.