This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2022 3rd Memorial "Aleksandar Blazhevski-Cane", P6

For any integer $n\geq1$, we consider a set $P_{2n}$ of $2n$ points placed equidistantly on a circle. A [i]perfect matching[/i] on this point set is comprised of $n$ (straight-line) segments whose endpoints constitute $P_{2n}$. Let $\mathcal{M}_{n}$ denote the set of all non-crossing perfect matchings on $P_{2n}$. A perfect matching $M\in \mathcal{M}_{n}$ is said to be [i]centrally symmetric[/i], if it is invariant under point reflection at the circle center. Determine, as a function of $n$, the number of centrally symmetric perfect matchings within $\mathcal{M}_{n}$. [i]Proposed by Mirko Petrusevski[/i]