This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

1986 IMO Longlists, 69

Let $AX,BY,CZ$ be three cevians concurrent at an interior point $D$ of a triangle $ABC$. Prove that if two of the quadrangles $DY AZ,DZBX,DXCY$ are circumscribable, so is the third.

1986 IMO Shortlist, 18

Let $AX,BY,CZ$ be three cevians concurrent at an interior point $D$ of a triangle $ABC$. Prove that if two of the quadrangles $DY AZ,DZBX,DXCY$ are circumscribable, so is the third.