This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 5

2019 Iran RMM TST, 2

Let $n >1$ be a natural number and $T_{n}(x)=x^n + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + ... + a_1 x^1 + a_0$.\\ Assume that for each nonzero real number $t $ we have $T_{n}(t+\frac {1}{t})=t^n+\frac {1}{t^n} $.\\ Prove that for each $0\le i \le n-1 $ $gcd (a_i,n) >1$. [i]Proposed by Morteza Saghafian[/i]

2019 Latvia Baltic Way TST, 4

Let $P(x)$ be a polynomial with degree $n$ and real coefficients. For all $0 \le y \le 1$ holds $\mid p(y) \mid \le 1$. Prove that $p(-\frac{1}{n}) \le 2^{n+1} -1$

1976 IMO Shortlist, 9

Let $P_{1}(x)=x^{2}-2$ and $P_{j}(x)=P_{1}(P_{j-1}(x))$ for j$=2,\ldots$ Prove that for any positive integer n the roots of the equation $P_{n}(x)=x$ are all real and distinct.

1976 IMO Longlists, 11

Let $P_{1}(x)=x^{2}-2$ and $P_{j}(x)=P_{1}(P_{j-1}(x))$ for j$=2,\ldots$ Prove that for any positive integer n the roots of the equation $P_{n}(x)=x$ are all real and distinct.

1976 IMO, 2

Let $P_{1}(x)=x^{2}-2$ and $P_{j}(x)=P_{1}(P_{j-1}(x))$ for j$=2,\ldots$ Prove that for any positive integer n the roots of the equation $P_{n}(x)=x$ are all real and distinct.