This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

Estonia Open Senior - geometry, 1998.2.5

The plane has a semicircle with center $O$ and diameter $AB$. Chord $CD$ is parallel to the diameter $AB$ and $\angle AOC = \angle DOB = \frac{7}{16}$ (radians). Which of the two parts it divides into a semicircle is larger area?

2015 NIMO Summer Contest, 10

Let $ABCD$ be a tetrahedron with $AB=CD=1300$, $BC=AD=1400$, and $CA=BD=1500$. Let $O$ and $I$ be the centers of the circumscribed sphere and inscribed sphere of $ABCD$, respectively. Compute the smallest integer greater than the length of $OI$. [i] Proposed by Michael Ren [/i]