This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 29

2017 Pan-African Shortlist, C1

Abimbola plays a game with a coin. He tosses the coin a number of times, and records whether each toss was a "heads" or "tails". He stops tossing the coin as soon as he tosses an odd number of heads in a row, followed by a tails. (Note that he stops if the number of heads since the previous time that he tosses tails is odd, and he then tosses another tails. If he has not tossed tails previously, then he stops if the total number of heads is odd, and he then tosses tails.) How many different sequences of coin tosses are there such that he stops after the $n^\text{th}$ coin toss?

2019 Tournament Of Towns, 2

Consider 2n+1 coins lying in a circle. At the beginning, all the coins are heads up. Moving clockwise, 2n+1 flips are performed: one coin is flipped, the next coin is skipped, the next coin is flipped, the next two coins are skipped, the next coin is flipped,the next three coins are skipped and so on, until finally 2n coins are skipped and the next coin is flipped.Prove that at the end of this procedure,exactly one coin is heads down.

2022 Greece Team Selection Test, 4

In an exotic country, the National Bank issues coins that can take any value in the interval $[0, 1]$. Find the smallest constant $c > 0$ such that the following holds, no matter the situation in that country: [i]Any citizen of the exotic country that has a finite number of coins, with a total value of no more than $1000$, can split those coins into $100$ boxes, such that the total value inside each box is at most $c$.[/i]

2023 Indonesia TST, 2

Let $n > 3$ be a positive integer. Suppose that $n$ children are arranged in a circle, and $n$ coins are distributed between them (some children may have no coins). At every step, a child with at least 2 coins may give 1 coin to each of their immediate neighbors on the right and left. Determine all initial distributions of the coins from which it is possible that, after a finite number of steps, each child has exactly one coin.