This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 76

2020 JBMO Shortlist, 6

Are there any positive integers $m$ and $n$ satisfying the equation $m^3 = 9n^4 + 170n^2 + 289$ ?

2021 Balkan MO Shortlist, N5

A natural number $n$ is given. Determine all $(n - 1)$-tuples of nonnegative integers $a_1, a_2, ..., a_{n - 1}$ such that $$\lfloor \frac{m}{2^n - 1}\rfloor + \lfloor \frac{2m + a_1}{2^n - 1}\rfloor + \lfloor \frac{2^2m + a_2}{2^n - 1}\rfloor + \lfloor \frac{2^3m + a_3}{2^n - 1}\rfloor + ... + \lfloor \frac{2^{n - 1}m + a_{n - 1}}{2^n - 1}\rfloor = m$$ holds for all $m \in \mathbb{Z}$.

2022 JBMO Shortlist, C3

There are $200$ boxes on the table. In the beginning, each of the boxes contains a positive integer (the integers are not necessarily distinct). Every minute, Alice makes one move. A move consists of the following. First, she picks a box $X$ which contains a number $c$ such that $c = a + b$ for some numbers $a$ and $b$ which are contained in some other boxes. Then she picks a positive integer $k > 1$. Finally, she removes $c$ from $X$ and replaces it with $kc$. If she cannot make any mobes, she stops. Prove that no matter how Alice makes her moves, she won't be able to make infinitely many moves.

2021 Balkan MO Shortlist, N4

Can every positive rational number $q$ be written as $$\frac{a^{2021} + b^{2023}}{c^{2022} + d^{2024}},$$ where $a, b, c, d$ are all positive integers? [i]Proposed by Dominic Yeo, UK[/i]

2022 JBMO Shortlist, A4

Suppose that $a, b,$ and $c$ are positive real numbers such that $$a + b + c \ge \frac{1}{a} + \frac{1}{b} + \frac{1}{c}.$$ Find the largest possible value of the expression $$\frac{a + b - c}{a^3 + b^3 + abc} + \frac{b + c - a}{b^3 + c^3 + abc} + \frac{c + a - b}{c^3 + a^3 + abc}.$$

2021 Balkan MO Shortlist, A2

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $$f(x^2 + y) \ge (\frac{1}{x} + 1)f(y)$$ holds for all $x \in \mathbb{R} \setminus \{0\}$ and all $y \in \mathbb{R}$.

2022 Romania Team Selection Test, 2

Let $n \geq 2$ be an integer and let \[M=\bigg\{\frac{a_1 + a_2 + ... + a_k}{k}: 1 \le k \le n\text{ and }1 \le a_1 < \ldots < a_k \le n\bigg\}\] be the set of the arithmetic means of the elements of all non-empty subsets of $\{1, 2, ..., n\}$. Find \[\min\{|a - b| : a, b \in M\text{ with } a \neq b\}.\]

2020 JBMO Shortlist, 1

Let $\triangle ABC$ be an acute triangle. The line through $A$ perpendicular to $BC$ intersects $BC$ at $D$. Let $E$ be the midpoint of $AD$ and $\omega$ the the circle with center $E$ and radius equal to $AE$. The line $BE$ intersects $\omega$ at a point $X$ such that $X$ and $B$ are not on the same side of $AD$ and the line $CE$ intersects $\omega$ at a point $Y$ such that $C$ and $Y$ are not on the same side of $AD$. If both of the intersection points of the circumcircles of $\triangle BDX$ and $\triangle CDY$ lie on the line $AD$, prove that $AB = AC$.

2022 JBMO Shortlist, N1

Determine all pairs $(k, n)$ of positive integers that satisfy $$1! + 2! + ... + k! = 1 + 2 + ... + n.$$

2022 Azerbaijan BMO TST, G1

Let $ABC$ be a triangle with $AB < AC < BC$. On the side $BC$ we consider points $D$ and $E$ such that $BA = BD$ and $CE = CA$. Let $K$ be the circumcenter of triangle $ADE$ and let $F$, $G$ be the points of intersection of the lines $AD$, $KC$ and $AE$, $KB$ respectively. Let $\omega_1$ be the circumcircle of triangle $KDE$, $\omega_2$ the circle with center $F$ and radius $FE$, and $\omega_3$ the circle with center $G$ and radius $GD$. Prove that $\omega_1$, $\omega_2$, and $\omega_3$ pass through the same point and that this point of intersection lies on the line $AK$.

2022 Azerbaijan BMO TST, C3

In an exotic country, the National Bank issues coins that can take any value in the interval $[0, 1]$. Find the smallest constant $c > 0$ such that the following holds, no matter the situation in that country: [i]Any citizen of the exotic country that has a finite number of coins, with a total value of no more than $1000$, can split those coins into $100$ boxes, such that the total value inside each box is at most $c$.[/i]

2022 JBMO Shortlist, N6

Find all positive integers $n$ for which there exists an integer multiple of $2022$ such that the sum of the squares of its digits is equal to $n$.

2023 Greece JBMO TST, 4

Determine all pairs $(k, n)$ of positive integers that satisfy $$1! + 2! + ... + k! = 1 + 2 + ... + n.$$

2022 JBMO Shortlist, A6

Let $a, b,$ and $c$ be positive real numbers such that $a^2 + b^2 + c^2 = 3$. Prove that $$\frac{a^2 + b^2}{2ab} + \frac{b^2 + c^2}{2bc} + \frac{c^2 + a^2}{2ca} + \frac{2(ab + bc + ca)}{3} \ge 5 + |(a - b)(b - c)(c - a)|.$$

2022 Greece Team Selection Test, 4

In an exotic country, the National Bank issues coins that can take any value in the interval $[0, 1]$. Find the smallest constant $c > 0$ such that the following holds, no matter the situation in that country: [i]Any citizen of the exotic country that has a finite number of coins, with a total value of no more than $1000$, can split those coins into $100$ boxes, such that the total value inside each box is at most $c$.[/i]

2021 Balkan MO Shortlist, G5

Let $ABC$ be an acute triangle with $AC > AB$ and circumcircle $\Gamma$. The tangent from $A$ to $\Gamma$ intersects $BC$ at $T$. Let $M$ be the midpoint of $BC$ and let $R$ be the reflection of $A$ in $B$. Let $S$ be a point so that $SABT$ is a parallelogram and finally let $P$ be a point on line $SB$ such that $MP$ is parallel to $AB$. Given that $P$ lies on $\Gamma$, prove that the circumcircle of $\triangle STR$ is tangent to line $AC$. [i]Proposed by Sam Bealing, United Kingdom[/i]

2021 Balkan MO Shortlist, N7

A [i]super-integer[/i] triangle is defined to be a triangle whose lengths of all sides and at least one height are positive integers. We will deem certain positive integer numbers to be [i]good[/i] with the condition that if the lengths of two sides of a super-integer triangle are two (not necessarily different) good numbers, then the length of the remaining side is also a good number. Let $5$ be a good number. Prove that all integers larger than $2$ are good numbers.

2021 Balkan MO Shortlist, N2

Denote by $l(n)$ the largest prime divisor of $n$. Let $a_{n+1} = a_n + l(a_n)$ be a recursively defined sequence of integers with $a_1 = 2$. Determine all natural numbers $m$ such that there exists some $i \in \mathbb{N}$ with $a_i = m^2$. [i]Proposed by Nikola Velov, North Macedonia[/i]

2023 Azerbaijan JBMO TST, 4

There are $200$ boxes on the table. In the beginning, each of the boxes contains a positive integer (the integers are not necessarily distinct). Every minute, Alice makes one move. A move consists of the following. First, she picks a box $X$ which contains a number $c$ such that $c = a + b$ for some numbers $a$ and $b$ which are contained in some other boxes. Then she picks a positive integer $k > 1$. Finally, she removes $c$ from $X$ and replaces it with $kc$. If she cannot make any mobes, she stops. Prove that no matter how Alice makes her moves, she won't be able to make infinitely many moves.

2021 JBMO Shortlist, G5

Let $ABC$ be an acute scalene triangle with circumcircle $\omega$. Let $P$ and $Q$ be interior points of the sides $AB$ and $AC$, respectively, such that $PQ$ is parallel to $BC$. Let $L$ be a point on $\omega$ such that $AL$ is parallel to $BC$. The segments $BQ$ and $CP$ intersect at $S$. The line $LS$ intersects $\omega$ at $K$. Prove that $\angle BKP = \angle CKQ$. Proposed by [i]Ervin Macić, Bosnia and Herzegovina[/i]

2021 Balkan MO Shortlist, G7

Let $ABC$ be an acute scalene triangle. Its $C$-excircle tangent to the segment $AB$ meets $AB$ at point $M$ and the extension of $BC$ beyond $B$ at point $N$. Analogously, its $B$-excircle tangent to the segment $AC$ meets $AC$ at point $P$ and the extension of $BC$ beyond $C$ at point $Q$. Denote by $A_1$ the intersection point of the lines $MN$ and $PQ$, and let $A_2$ be defined as the point, symmetric to $A$ with respect to $A_1$. Define the points $B_2$ and $C_2$, analogously. Prove that $\triangle ABC$ is similar to $\triangle A_2B_2C_2$.

2023 Azerbaijan JBMO TST, 1

Let $a < b < c < d < e$ be positive integers. Prove that $$\frac{1}{[a, b]} + \frac{1}{[b, c]} + \frac{1}{[c, d]} + \frac{2}{[d, e]} \le 1$$ where $[x, y]$ is the least common multiple of $x$ and $y$ (e.g., $[6, 10] = 30$). When does equality hold?

2021 JBMO Shortlist, C2

Let $n$ be a positive integer. We are given a $3n \times 3n$ board whose unit squares are colored in black and white in such way that starting with the top left square, every third diagonal is colored in black and the rest of the board is in white. In one move, one can take a $2 \times 2$ square and change the color of all its squares in such way that white squares become orange, orange ones become black and black ones become white. Find all $n$ for which, using a finite number of moves, we can make all the squares which were initially black white, and all squares which were initially white black. Proposed by [i]Boris Stanković and Marko Dimitrić, Bosnia and Herzegovina[/i]

2022 Bulgaria EGMO TST, 4

Denote by $l(n)$ the largest prime divisor of $n$. Let $a_{n+1} = a_n + l(a_n)$ be a recursively defined sequence of integers with $a_1 = 2$. Determine all natural numbers $m$ such that there exists some $i \in \mathbb{N}$ with $a_i = m^2$. [i]Proposed by Nikola Velov, North Macedonia[/i]

2021 Saudi Arabia JBMO TST, 3

Consider the sequence $a_1, a_2, a_3, ...$ defined by $a_1 = 9$ and $a_{n + 1} = \frac{(n + 5)a_n + 22}{n + 3}$ for $n \ge 1$. Find all natural numbers $n$ for which $a_n$ is a perfect square of an integer.