This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 81

2001 Stanford Mathematics Tournament, 9

What is the minimum number of straight cuts needed to cut a cake in 100 pieces? The pieces do not need to be the same size or shape but cannot be rearranged between cuts. You may assume that the cake is a large cube and may be cut from any direction.

2014 NIMO Problems, 8

Tags: geometry , college
Three of the below entries, with labels $a$, $b$, $c$, are blatantly incorrect (in the United States). What is $a^2+b^2+c^2$? 041. The Gentleman's Alliance Cross 042. Glutamine (an amino acid) 051. Grant Nelson and Norris Windross 052. A compact region at the center of a galaxy 061. The value of \verb+'wat'-1+. (See \url{https://www.destroyallsoftware.com/talks/wat}.) 062. Threonine (an amino acid) 071. Nintendo Gamecube 072. Methane and other gases are compressed 081. A prank or trick 082. Three carbons 091. Australia's second largest local government area 092. Angoon Seaplane Base 101. A compressed archive file format 102. Momordica cochinchinensis 111. Gentaro Takahashi 112. Nat Geo 121. Ante Christum Natum 122. The supreme Siberian god of death 131. Gnu C Compiler 132. My TeX Shortcut for $\angle$.

2014 PUMaC Team, 0

Your team receives up to $100$ points total for the team round. To play this minigame for up to $10$ bonus points, you must decide how to construct an optimal army with number of soldiers equal to the points you receive. Construct an army of $100$ soldiers with $5$ flanks; thus your army is the union of battalions $B_1$, $B_2$, $B_3$, $B_4$, and $B_5$. You choose the size of each battalion such that $|B_1|+|B_2|+|B_3|+|B_4|+|B_5|=100$. The size of each batallion must be integral and non-negative. Then, suppose you receive $n$ points for the Team Round. We will then "supply" your army as follows: if $n>B_1$, we fill in battalion $1$ so that it has $|B_1|$ soldiers; then repeat for the next battalion with $n-|B_1|$ soldiers. If at some point there are not enough soldiers to fill the battalion, the remainder will be put in that battalion and subsequent battalions will be empty. (Ex: suppose you tell us to form battalions of size $\{20,30,20,20,10\}$, and your team scores $73$ points. Then your battalions will actually be $\{20,30,20,3,0\}$.) Your team's army will then "fight" another's. The $B_i$ of both teams will be compared with the other $B_i$, and the winner of the overall war is the army who wins the majority of the battalion fights. The winner receives $1$ victory point, and in case of ties, both teams receive $\tfrac12$ victory points. Every team's army will fight everyone else's and the team war score will be the sum of the victory points won from wars. The teams with ranking $x$ where $7k\leq x\leq 7(k+1)$ will earn $10-k$ bonus points. For example: Team Princeton decides to allocate its army into battalions with size $|B_1|$, $|B_2|$, $|B_3|$, $|B_4|$, $|B_5|$ $=$ $20$, $20$, $20$, $20$, $20$. Team MIT allocates its army into battalions with size $|B_1|$, $|B_2|$, $|B_3|$, $|B_4|$, $|B_5|$ $=$ $10$, $10$, $10$, $10$, $60$. Now suppose Princeton scores $80$ points on the Team Round, and MIT scores $90$ points. Then after supplying, the armies will actually look like $\{20, 20, 20, 20, 0\}$ for Princeton and $\{10, 10, 10, 10, 50\}$ for MIT. Then note that in a war, Princeton beats MIT in the first four battalion battles while MIT only wins the last battalion battle; therefore Princeton wins the war, and Princeton would win $1$ victory point.

2013 Harvard-MIT Mathematics Tournament, 36

Tags: hmmt , euler , college
(Mathematicians A to Z) Below are the names of 26 mathematicians, one for each letter of the alphabet. Your answer to this question should be a subset of $\{A,B,\cdots,Z\}$, where each letter represents the corresponding mathematician. If two mathematicians in your subset have birthdates that are within $20$ years of each other, then your score is $0$. Otherwise, your score is $\max(3(k-3),0)$ where $k$ is the number of elements in your set. \[\begin{tabular}{cc}Niels Abel & Isaac Newton\\Etienne Bezout & Nicole Oresme \\ Augustin-Louis Cauchy & Blaise Pascal \\ Rene Descartes & Daniel Quillen \\ Leonhard Euler & Bernhard Riemann\\ Pierre Fatou & Jean-Pierre Serre \\ Alexander Grothendieck & Alan Turing \\ David Hilbert & Stanislaw Ulam \\ Kenkichi Iwasawa & John Venn \\ Carl Jacobi & Andrew Wiles \\ Andrey Kolmogorov & Leonardo Ximenes \\ Joseph-Louis Lagrange & Shing-Tung Yau \\ John Milnor & Ernst Zermelo\end{tabular}\]

2022 Girls in Math at Yale, 10

Tags: college
How many ways are there to choose distinct positive integers $a, b, c, d$ dividing $15^6$ such that none of $a, b, c,$ or $d$ divide each other? (Order does not matter.) [i]Proposed by Miles Yamner and Andrew Wu[/i] (Note: wording changed from original to clarify)

2001 Stanford Mathematics Tournament, 11

Christopher and Robin are playing a game in which they take turns tossing a circular token of diameter 1 inch onto an infinite checkerboard whose squares have sides of 2 inches. If the token lands entirely in a square, the player who tossed the token gets 1 point; otherwise, the other player gets 1 point. A player wins as soon as he gets two more points than the other player. If Christopher tosses first, what is the probability that he will win? Express your answer as a fraction.