This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 70

2021 Cono Sur Olympiad, 4

In a heap there are $2021$ stones. Two players $A$ and $B$ play removing stones of the pile, alternately starting with $A$. A valid move for $A$ consists of remove $1, 2$ or $7$ stones. A valid move for B is to remove $1, 3, 4$ or $6$ stones. The player who leaves the pile empty after making a valid move wins. Determine if some of the players have a winning strategy. If such a strategy exists, explain it.

2024 Bangladesh Mathematical Olympiad, P10

Juty and Azgor plays the following game on a \((2n+1) \times (2n+1)\) board with Juty moving first. Initially all cells are colored white. On Juty's turn, she colors a white cell green and on Azgor's turn, he colors a white cell red. The game ends after they color all the cells of the board. Juty wins if all the green cells are connected, i.e. given any two green cells, there is at least one chain of neighbouring green cells connecting them (we call two cells [i]neighboring[/i] if they share at least one corner), otherwise Azgor wins. Determine which player has a winning strategy. [i]Proposed by Atonu Roy Chowdhury[/i]

Russian TST 2020, P3

There are 60 empty boxes $B_1,\ldots,B_{60}$ in a row on a table and an unlimited supply of pebbles. Given a positive integer $n$, Alice and Bob play the following game. In the first round, Alice takes $n$ pebbles and distributes them into the 60 boxes as she wishes. Each subsequent round consists of two steps: (a) Bob chooses an integer $k$ with $1\leq k\leq 59$ and splits the boxes into the two groups $B_1,\ldots,B_k$ and $B_{k+1},\ldots,B_{60}$. (b) Alice picks one of these two groups, adds one pebble to each box in that group, and removes one pebble from each box in the other group. Bob wins if, at the end of any round, some box contains no pebbles. Find the smallest $n$ such that Alice can prevent Bob from winning. [i]Czech Republic[/i]

2023 Thailand Online MO, 10

Let $n$ be an even positive integer. Alice and Bob play the following game. Before the start of the game, Alice chooses a set $S$ containing $m$ integers and announces it to Bob. The players then alternate turns, with Bob going first, choosing $i\in\{1,2,\dots, n\}$ that has not been chosen and setting the value of $v_i$ to either $0$ or $1$. At the end of the game, when all of $v_1,v_2,\dots,v_n$ have been set, the expression $$E=v_1\cdot 2^0 + v_2 \cdot 2^1 + \dots + v_n \cdot 2^{n-1}$$ is calculated. Determine the minimum $m$ such that Alice can always ensure that $E\in S$ regardless of how Bob plays.

2021 Israel TST, 1

Ayala and Barvaz play a game: Ayala initially gives Barvaz two $100\times100$ tables of positive integers, such that the product of numbers in each table is the same. In one move, Barvaz may choose a row or column in one of the tables, and change the numbers in it (to some positive integers), as long as the total product remains the same. Barvaz wins if after $N$ such moves, he manages to make the two tables equal to each other, and otherwise Ayala wins. a. For which values of $N$ does Barvaz have a winning strategy? b. For which values of $N$ does Barvaz have a winning strategy, if all numbers in Ayalah’s tables must be powers of $2$?

Kvant 2019, M2563

Pasha and Vova play the following game, making moves in turn; Pasha moves first. Initially, they have a large piece of plasticine. By a move, Pasha cuts one of the existing pieces into three(of arbitrary sizes), and Vova merges two existing pieces into one. Pasha wins if at some point there appear to be $100$ pieces of equal weights. Can Vova prevent Pasha's win?

2020 Caucasus Mathematical Olympiad, 3

Peter and Basil play the following game on a horizontal table $1\times{2019}$. Initially Peter chooses $n$ positive integers and writes them on a board. After that Basil puts a coin in one of the cells. Then at each move, Peter announces a number s among the numbers written on the board, and Basil needs to shift the coin by $s$ cells, if it is possible: either to the left, or to the right, by his decision. In case it is not possible to shift the coin by $s$ cells neither to the left, nor to the right, the coin stays in the current cell. Find the least $n$ such that Peter can play so that the coin will visit all the cells, regardless of the way Basil plays.

2016 Brazil National Olympiad, 3

Let it \(k\) be a fixed positive integer. Alberto and Beralto play the following game: Given an initial number \(N_0\) and starting with Alberto, they alternately do the following operation: change the number \(n\) for a number \(m\) such that \(m < n\) and \(m\) and \(n\) differ, in its base-2 representation, in exactly \(l\) consecutive digits for some \(l\) such that \(1 \leq l \leq k\). If someone can't play, he loses. We say a non-negative integer \(t\) is a [i]winner[/i] number when the gamer who receives the number \(t\) has a winning strategy, that is, he can choose the next numbers in order to guarrantee his own victory, regardless the options of the other player. Else, we call it [i]loser[/i]. Prove that, for every positive integer \(N\), the total of non-negative loser integers lesser than \(2^N\) is \(2^{N-\lfloor \frac{log(min\{N,k\})}{log 2} \rfloor}\)

2015 USA TSTST, 6

A [i]Nim-style game[/i] is defined as follows. Two positive integers $k$ and $n$ are specified, along with a finite set $S$ of $k$-tuples of integers (not necessarily positive). At the start of the game, the $k$-tuple $(n, 0, 0, ..., 0)$ is written on the blackboard. A legal move consists of erasing the tuple $(a_1,a_2,...,a_k)$ which is written on the blackboard and replacing it with $(a_1+b_1, a_2+b_2, ..., a_k+b_k)$, where $(b_1, b_2, ..., b_k)$ is an element of the set $S$. Two players take turns making legal moves, and the first to write a negative integer loses. In the event that neither player is ever forced to write a negative integer, the game is a draw. Prove that there is a choice of $k$ and $S$ with the following property: the first player has a winning strategy if $n$ is a power of 2, and otherwise the second player has a winning strategy. [i]Proposed by Linus Hamilton[/i]

1985 ITAMO, 15

In a tournament each player played exactly one game against each of the other players. In each game the winner was awarded 1 point, the loser got 0 points, and each of the two players earned 1/2 point if the game was a tie. After the completion of the tournament, it was found that exactly half of the points earned by each player were earned against the ten players with the least number of points. (In particular, each of the ten lowest scoring players earned half of her/his points against the other nine of the ten). What was the total number of players in the tournament?

1985 AIME Problems, 14

In a tournament each player played exactly one game against each of the other players. In each game the winner was awarded 1 point, the loser got 0 points, and each of the two players earned 1/2 point if the game was a tie. After the completion of the tournament, it was found that exactly half of the points earned by each player were earned against the ten players with the least number of points. (In particular, each of the ten lowest scoring players earned half of her/his points against the other nine of the ten). What was the total number of players in the tournament?

2020 Centroamerican and Caribbean Math Olympiad, 2

Suppose you have identical coins distributed in several piles with one or more coins in each pile. An action consists of taking two piles, which have an even total of coins among them, and redistribute their coins in two piles so that they end up with the same number of coins. A distribution is [i]levelable[/i] if it is possible, by means of 0 or more operations, to end up with all the piles having the same number of coins. Determine all positive integers $n$ such that, for all positive integers $k$, any distribution of $nk$ coins in $n$ piles is levelable.

2020 Brazil Undergrad MO, Problem 5

Let $N$ a positive integer. In a spaceship there are $2 \cdot N$ people, and each two of them are friends or foes (both relationships are symmetric). Two aliens play a game as follows: 1) The first alien chooses any person as she wishes. 2) Thenceforth, alternately, each alien chooses one person not chosen before such that the person chosen on each turn be a friend of the person chosen on the previous turn. 3) The alien that can't play in her turn loses. Prove that second player has a winning strategy [i]if, and only if[/i], the $2 \cdot N$ people can be divided in $N$ pairs in such a way that two people in the same pair are friends.

2020 Thailand TST, 6

There are 60 empty boxes $B_1,\ldots,B_{60}$ in a row on a table and an unlimited supply of pebbles. Given a positive integer $n$, Alice and Bob play the following game. In the first round, Alice takes $n$ pebbles and distributes them into the 60 boxes as she wishes. Each subsequent round consists of two steps: (a) Bob chooses an integer $k$ with $1\leq k\leq 59$ and splits the boxes into the two groups $B_1,\ldots,B_k$ and $B_{k+1},\ldots,B_{60}$. (b) Alice picks one of these two groups, adds one pebble to each box in that group, and removes one pebble from each box in the other group. Bob wins if, at the end of any round, some box contains no pebbles. Find the smallest $n$ such that Alice can prevent Bob from winning. [i]Czech Republic[/i]

2016 Stars of Mathematics, 2

Let $ m,n\ge 2 $ and consider a rectangle formed by $ m\times n $ unit squares that are colored, either white, or either black. A [i]step[/i] is the action of selecting from it a rectangle of dimensions $ 1\times k, $ where $ k $ is an odd number smaller or equal to $ n, $ or a rectangle of dimensions $ l\times 1, $ where $ l $ is and odd number smaller than $ m, $ and coloring all the unit squares of this chosen rectangle with the color that appears the least in it. [b]a)[/b] Show that, for any $ m,n\ge 5, $ there exists a succession of [i]steps[/i] that make the rectagle to be single-colored. [b]b)[/b] What about $ m=n+1=5? $

2020 IMO Shortlist, C8

Players $A$ and $B$ play a game on a blackboard that initially contains 2020 copies of the number 1 . In every round, player $A$ erases two numbers $x$ and $y$ from the blackboard, and then player $B$ writes one of the numbers $x+y$ and $|x-y|$ on the blackboard. The game terminates as soon as, at the end of some round, one of the following holds: [list] [*] $(1)$ one of the numbers on the blackboard is larger than the sum of all other numbers; [*] $(2)$ there are only zeros on the blackboard. [/list] Player $B$ must then give as many cookies to player $A$ as there are numbers on the blackboard. Player $A$ wants to get as many cookies as possible, whereas player $B$ wants to give as few as possible. Determine the number of cookies that $A$ receives if both players play optimally.

2018 Belarusian National Olympiad, 10.8

The vertices of the regular $n$-gon and its center are marked. Two players play the following game: they, in turn, select a vertex and connect it by a segment to either the adjacent vertex or the center. The winner I a player if after his maveit is possible to get any marked point from any other moving along the segments. For each $n>2$ determine who has a winning strategy.

2019 All-Russian Olympiad, 2

Pasha and Vova play the following game, making moves in turn; Pasha moves first. Initially, they have a large piece of plasticine. By a move, Pasha cuts one of the existing pieces into three(of arbitrary sizes), and Vova merges two existing pieces into one. Pasha wins if at some point there appear to be $100$ pieces of equal weights. Can Vova prevent Pasha's win?

2017 Spain Mathematical Olympiad, 4

You are given a row made by $2018$ squares, numbered consecutively from $0$ to $2017$. Initially, there is a coin in the square $0$. Two players $A$ and $B$ play alternatively, starting with $A$, on the following way: In his turn, each player can either make his coin advance $53$ squares or make the coin go back $2$ squares. On each move the coin can never go to a number less than $0$ or greater than $2017$. The player who puts the coin on the square $2017$ wins. ¿Who is the one with the wining strategy and how should he play to win?

2019 South East Mathematical Olympiad, 7

Amy and Bob choose numbers from $0,1,2,\cdots,81$ in turn and Amy choose the number first. Every time the one who choose number chooses one number from the remaining numbers. When all $82$ numbers are chosen, let $A$ be the sum of all the numbers Amy chooses, and let $B$ be the sum of all the numbers Bob chooses. During the process, Amy tries to make $\gcd(A,B)$ as great as possible, and Bob tries to make $\gcd(A,B)$ as little as possible. Suppose Amy and Bob take the best strategy of each one, respectively, determine $\gcd(A,B)$ when all $82$ numbers are chosen.

1996 Mexico National Olympiad, 2

There are $64$ booths around a circular table and on each one there is a chip. The chips and the corresponding booths are numbered $1$ to $64$ in this order. At the center of the table there are $1996$ light bulbs which are all turned off. Every minute the chips move simultaneously in a circular way (following the numbering sense) as follows: chip $1$ moves one booth, chip $2$ moves two booths, etc., so that more than one chip can be in the same booth. At any minute, for each chip sharing a booth with chip $1$ a bulb is lit. Where is chip $1$ on the first minute in which all bulbs are lit?

2021 JHMT HS, 7

A number line with the integers $1$ through $20,$ from left to right, is drawn. Ten coins are placed along this number line, with one coin at each odd number on the line. A legal move consists of moving one coin from its current position to a position of strictly greater value on the number line that is not already occupied by another coin. How many ways can we perform two legal moves in sequence, starting from the initial position of the coins (different two-move sequences that result in the same position are considered distinct)?

2017 South Africa National Olympiad, 4

Andile and Zandre play a game on a $2017 \times 2017$ board. At the beginning, Andile declares some of the squares [i]forbidden[/i], meaning the nothing may be placed on such a square. After that, they take turns to place coins on the board, with Zandre placing the first coin. It is not allowed to place a coin on a forbidden square or in the same row or column where another coin has already been placed. The player who places the last coin wins the game. What is the least number of squares Andile needs to declare as forbidden at the beginning to ensure a win? (Assume that both players use an optimal strategy.)

2017 German National Olympiad, 3

General Tilly and the Duke of Wallenstein play "Divide and rule!" (Divide et impera!). To this end, they arrange $N$ tin soldiers in $M$ companies and command them by turns. Both of them must give a command and execute it in their turn. Only two commands are possible: The command "[i]Divide![/i]" chooses one company and divides it into two companies, where the commander is free to choose their size, the only condition being that both companies must contain at least one tin soldier. On the other hand, the command "[i]Rule![/i]" removes exactly one tin soldier from each company. The game is lost if in your turn you can't give a command without losing a company. Wallenstein starts to command. a) Can he force Tilly to lose if they start with $7$ companies of $7$ tin soldiers each? b) Who loses if they start with $M \ge 1$ companies consisting of $n_1 \ge 1, n_2 \ge 1, \dotsc, n_M \ge 1$ $(n_1+n_2+\dotsc+n_M=N)$ tin soldiers?

2021 Israel TST, 3

A game is played on a $n \times n$ chessboard. In the beginning Bars the cat occupies any cell according to his choice. The $d$ sparrows land on certain cells according to their choice (several sparrows may land in the same cell). Bars and the sparrows play in turns. In each turn of Bars, he moves to a cell adjacent by a side or a vertex (like a king in chess). In each turn of the sparrows, precisely one of the sparrows flies from its current cell to any other cell of his choice. The goal of Bars is to get to a cell containing a sparrow. Can Bars achieve his goal a) if $d=\lfloor \frac{3\cdot n^2}{25}\rfloor$, assuming $n$ is large enough? b) if $d=\lfloor \frac{3\cdot n^2}{19}\rfloor$, assuming $n$ is large enough? c) if $d=\lfloor \frac{3\cdot n^2}{14}\rfloor$, assuming $n$ is large enough?