Found problems: 70
JOM 2015, 5
Navi and Ozna are playing a game where Ozna starts first and the two take turn making moves. A positive integer is written on the waord. A move is to (i) subtract any positive integer at most 2015 from it or (ii) given that the integer on the board is divisible by $2014$, divide by $2014$. The first person to make the integer $0$ wins. To make Navi's condition worse, Ozna gets to pick integers $a$ and $b$, $a\ge 2015$ such that all numbers of the form $an+b$ will not be the starting integer, where $n$ is any positive integer.
Find the minimum number of starting integer where Navi wins.
2017 Baltic Way, 10
Maker and Breaker are building a wall. Maker has a supply of green cubical building blocks, and Breaker has a supply of red ones, all of the same size. On the ground, a row of $m$ squares has been marked in chalk as place-holders. Maker and Breaker now take turns in placing a block either directly on one of these squares, or on top of another block already in place, in such a way that the height of each column never exceeds $n$. Maker places the first block.
Maker bets that he can form a green row, i.e. all $m$ blocks at a certain height are green. Breaker bets that he can prevent Maker from achieving this. Determine all pairs $(m,n)$ of positive integers for which Maker can make sure he wins the bet.
2017 Korea Winter Program Practice Test, 2
Alice and Bob play a game. There are $100$ gold coins, $100$ silver coins, and $100$ bronze coins. Players take turns to take at least one coin, but they cannot take two or more coins of same kind at once. Alice goes first. The player who cannot take any coin loses. Who has a winning strategy?
1994 IMO Shortlist, 6
Two players play alternatively on an infinite square grid. The first player puts an $X$ in an empty cell and the second player puts an $O$ in an empty cell. The first player wins if he gets $11$ adjacent $X$'s in a line - horizontally, vertically or diagonally. Show that the second player can always prevent the first player from winning.
2020 Australian Maths Olympiad, 2
Amy and Bec play the following game. Initially, there are three piles, each containing $2020$ stones. The players take turns to make a move, with Amy going first. Each move consists of choosing one of the piles available, removing the unchosen pile(s) from the game, and then dividing the chosen pile into $2$ or $3$ non-empty piles. A player loses the game if he/she is unable to make a move.
Prove that Bec can always win the game, no matter how Amy plays.
2019 Singapore MO Open, 3
A robot is placed at point $P$ on the $x$-axis but different from $(0,0)$ and $(1,0)$ and can only move along the axis either to the left or to the right. Two players play the following game. Player $A$ gives a distance and $B$ gives a direction and the robot will move the indicated distance along the indicated direction. Player $A$ aims to move the robot to either $(0,0)$ or $(1,0)$. Player $B$'s aim is to stop $A$ from achieving his aim. For which $P$ can $A$ win?
2019 Belarusian National Olympiad, 9.8
Andrey and Sasha play the game, making moves alternate. On his turn, Andrey marks on the plane an arbitrary point that has not yet been marked. After that, Sasha colors this point in one of two colors: white and black. Sasha wins if after his move it is impossible to draw a line such that all white points lie in one half-plane, while all black points lie in another half-plane with respect to this line.
[b]a)[/b] Prove that Andrey can make moves in such a way that Sasha will never win.
[b]b)[/b] Suppose that Andrey can mark only integer points on the Cartesian plane. Can Sasha guarantee himself a win regardless of Andrey's moves?
[i](N. Naradzetski)[/i]
2018 Turkey Junior National Olympiad, 2
We are placing rooks on a $n \cdot n$ chess table that providing this condition:
Every two rooks will threaten an empty square at least.
What is the most number of rooks?
2021 Canadian Mathematical Olympiad Qualification, 5
Alphonse and Beryl are playing a game. The game starts with two rectangles with integer side lengths. The players alternate turns, with Alphonse going first. On their turn, a player chooses one rectangle, and makes a cut parallel to a side, cutting the rectangle into two pieces, each of which has integer side lengths. The player then discards one of the three rectangles (either the one they did not cut, or one of the two pieces they cut) leaving two rectangles for the other player. A player loses if they cannot cut a rectangle.
Determine who wins each of the following games:
(a) The starting rectangles are $1 \times 2020$ and $2 \times 4040$.
(b) The starting rectangles are $100 \times 100$ and $100 \times 500$.
1995 Belarus National Olympiad, Problem 7
The expression $1\oplus2\oplus3\oplus4\oplus5\oplus6\oplus7\oplus8\oplus9$ is written on a blackboard. Bill and Peter play the following game. They replace $\oplus$ by $+$ or $\cdot$, making their moves in turn, and one of them can use only $+$, while the other one can use only $\cdot$. At the beginning, Bill selects the sign he will use, and he tries to make the result an even number. Peter tries to make the result an odd number. Prove that Peter can always win.
[hide=Original Wording]The expression $1*2*3*4*5*6*7*8*9$ is written on a blackboard. Bill and Peter play the following game. They replace $*$ by $+$ or $\cdot$, making their moves in turn, and one of them can use only $+$, while the other one can use only $\cdot$. At the beginning Bill selects the sign he will use, and he tries to make the result an even number. Peter tries to make the result an odd number. Prove that Peter can always win.[/hide]
2016 Tuymaada Olympiad, 1
Tanya and Serezha have a heap of $2016$ candies. They make moves in turn, Tanya moves first. At each move a player can eat either one candy or (if the number of candies is even at the moment) exactly half of all candies. The player that cannot move loses. Which of the players has a winning strategy?
2021 Olympic Revenge, 4
On a chessboard, Po controls a white queen and plays, in alternate turns, against an invisible black king (there are only those two pieces on the board). The king cannot move to a square where he would be in check, neither capture the queen. Every time the king makes a move, Po receives a message from beyond that tells which direction the king has moved (up, right, up-right, etc). His goal is to make the king unable to make a movement.
Can Po reach his goal with at most $150$ moves, regardless the starting position of the pieces?
2018 Brazil National Olympiad, 3
Let $k$, $n$ be fixed positive integers. In a circular table, there are placed pins numbered successively with the numbers $1, 2 \dots, n$, with $1$ and $n$ neighbors. It is known that pin $1$ is golden and the others are white. Arnaldo and Bernaldo play a game, in which a ring is placed initially on one of the pins and at each step it changes position. The game begins with Bernaldo choosing a starting pin for the ring, and the first step consists of the following: Arnaldo chooses a positive integer $d$ any and Bernaldo moves the ring $d$ pins clockwise or counterclockwise (positions are considered modulo $n$, i.e., pins $x$, $y$ equal if and only if $n$ divides $x-y$). After that, the ring changes its position according to one of the following rules, to be chosen at every step by Arnaldo:
[b]Rule 1:[/b] Arnaldo chooses a positive integer $d$ and Bernaldo moves the ring $d$ pins clockwise or counterclockwise.
[b]Rule 2:[/b] Arnaldo chooses a direction (clockwise or counterclockwise), and Bernaldo moves the ring in the chosen direction in $d$ or $kd$ pins, where $d$ is the size of the last displacement performed.
Arnaldo wins if, after a finite number of steps, the ring is moved to the golden pin. Determine, as a function of $k$, the values of $n$ for which Arnaldo has a strategy that guarantees his victory, no matter how Bernaldo plays.
1998 Brazil National Olympiad, 1
Two players play a game as follows. The first player chooses two non-zero integers A and B. The second player forms a quadratic with A, B and 1998 as coefficients (in any order). The first player wins iff the equation has two distinct rational roots. Show that the first player can always win.
2006 Korea National Olympiad, 2
Alice and Bob are playing "factoring game." On the paper, $270000(=2^43^35^4)$ is written and each person picks one number from the paper(call it $N$) and erase $N$ and writes integer $X,Y$ such that $N=XY$ and $\text{gcd}(X,Y)\ne1.$ Alice goes first and the person who can no longer make this factoring loses. If two people use optimal strategy, prove that Alice always win.
Kvant 2020, M2612
Peter and Basil play the following game on a horizontal table $1\times{2019}$. Initially Peter chooses $n$ positive integers and writes them on a board. After that Basil puts a coin in one of the cells. Then at each move, Peter announces a number s among the numbers written on the board, and Basil needs to shift the coin by $s$ cells, if it is possible: either to the left, or to the right, by his decision. In case it is not possible to shift the coin by $s$ cells neither to the left, nor to the right, the coin stays in the current cell. Find the least $n$ such that Peter can play so that the coin will visit all the cells, regardless of the way Basil plays.
2017 Balkan MO Shortlist, C1
A grasshopper is sitting at an integer point in the Euclidean plane. Each second it jumps to another integer point in such a way that the jump vector is constant. A hunter that knows neither the starting point of the grasshopper nor the jump vector (but knows that the jump vector for each second is constant) wants to catch the grasshopper. Each second the hunter can choose one integer point in the plane and, if the grasshopper is there, he catches it. Can the hunter always catch the grasshopper in a finite amount of time?
2021 Moldova Team Selection Test, 10
On a board there are written the integers from $1$ to $119$. Two players, $A$ and $B$, make a move by turn. A $move$ consists in erasing $9$ numbers from the board. The player after whose move two numbers remain on the board wins and his score is equal with the positive difference of the two remaining numbers. The player $A$ makes the first move. Find the highest integer $k$, such that the player $A$ can be sure that his score is not smaller than $k$.
2016 Tournament Of Towns, 6
Petya and Vasya play the following game. Petya conceives a polynomial $P(x)$ having integer coefficients. On each move, Vasya pays him a ruble, and calls an integer $a$ of his choice, which has not yet been called by him. Petya has to reply with the number of distinct integer solutions of the equation $P(x)=a$. The game continues until Petya is forced to repeat an answer. What minimal amount of rubles must Vasya pay in order to win?
[i](Anant Mudgal)[/i]
(Translated from [url=http://sasja.shap.homedns.org/Turniry/TG/index.html]here.[/url])
2025 Bangladesh Mathematical Olympiad, P7
Yamin and Tamim are playing a game with subsets of $\{1, 2, \ldots, n\}$ where $n \geq 3$.
[list]
[*] Tamim starts the game with the empty set.
[*] On Yamin's turn, he adds a proper non-empty subset of $\{1, 2, \ldots, n\}$ to his collection $F$ of blocked sets.
[*] On Tamim's turn, he adds or removes a positive integer less than or equal to $n$ to or from their set but Tamim can never add or remove an element so that his set becomes one of the blocked sets in $F$.
[/list]
Tamim wins if he can make his set to be $\{1, 2, \ldots, n\}$. Yamin wins if he can stop Tamim from doing so. Yamin goes first and they alternate making their moves. Does Tamim have a winning strategy?
[i]Proposed by Ahmed Ittihad Hasib[/i]