This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1704

2016 Saint Petersburg Mathematical Olympiad, 2

The rook, standing on the surface of the checkered cube, beats the cells, located in the same row as well as on the continuations of this series through one or even several edges. (The picture shows an example for a $4 \times 4 \times 4$ cube,visible cells that some beat the rook, shaded gray.) What is the largest number do not beat each other rooks can be placed on the surface of the cube $50 \times 50 \times 50$?

2006 All-Russian Olympiad Regional Round, 8.4

Each detail of the “Young Solderer” instructor is a bracket in the shape of the letter $\Pi$, consisting of three single segments. Is it possible from the parts of this constructor are soldered together, a complete wire frame of the cube $2 \times 2 \times 2$, divided into $1 \times 1 \times 1$ cubes? (The frame consists of 27 points, connected by single segments; any two adjacent points must be connected by exactly one piece of wire.) [hide]=original wording]Каждая деталько нструктора ''Юный паяльщик'' — это скобка в виде буквы П, остоящая из трех единичных отрезков. Можно ли издеталей этого конструктора спаятьполный роволочный каркас куба 2 × × 2 × 2, разбитого на кубики 1 × 1 × 1? (Каркас состоит из 27 точек,соединенных единичными отрезками; любые две соседние точки должны бытьсоединены ровно одним проволочным отрезком.)[/hide]

2016 Czech-Polish-Slovak Junior Match, 3

On a plane several straight lines are drawn in such a way that each of them intersects exactly $15$ other lines. How many lines are drawn on the plane? Find all possibilities and justify your answer. Poland

1994 Argentina National Olympiad, 1

$30$ segments of lengths$$1,\quad \sqrt{3},\quad \sqrt{5},\quad \sqrt{7},\quad \sqrt{9},\quad \ldots ,\quad \sqrt{59} $$ have been drawn on a blackboard. In each step, two of the segments are deleted and a new segment of length equal to the hypotenuse of the right triangle with legs equal to the two deleted segments is drawn. After $29$ steps only one segment remains. Find the possible values of its length.