Found problems: 127
2014 Czech-Polish-Slovak Junior Match, 6
Determine the largest and smallest fractions $F = \frac{y-x}{x+4y}$
if the real numbers $x$ and $y$ satisfy the equation $x^2y^2 + xy + 1 = 3y^2$.
2020 Kyiv Mathematical Festival, 2
Mummy-trolley huts are located on a straight line at points with coordinates $x_1, x_2,...., x_n$. In this village are going to build $3$ stores $A, B$ and $C$, of which will be brought every day to all Moomin-trolls chocolates, bread and water. For the delivery of chocolate, the store takes the distance from the store to the hut, raised to the square; for bread delivery , take the distance from the store to the hut; for water delivery take distance $1$, if the distance is greater than $1$ km, but do not take anything otherwise.
a) Where to build each of the stores so that the total cost of all Moomin-trolls for delivery wasthe smallest?
b) Where to place the TV tower, if the fee for each Moomin-troll is the maximum distance from the TV tower to the farthest hut from it?
c) How will the answer change if the Moomin-troll huts are not located in a straight line, and on the plane?
[hide=original wording]
На прямiй розташованi хатинки Мумi-тролей в точках з координатами x1, x2, . . . , xn. В цьому селi бираються побудувати 3 магазина A, B та C, з яких будуть кожен день привозити всiм Мумi-тролям шоколадки, хлiб та воду. За доставку шоколадки мага- зин бере вiдстань вiд магазину до хатинки, пiднесену до квадрату; за доставку хлiба – вiдстань вiд магазину до хатинки; за доставку води беруть 1, якщо вiдстань бiльша 1 км, та нiчого не беруть в супротивному випадку.
1. Де побудувати кожний з магазинiв, щоб загальнi витрати всiх Мумi-тролей на доставку були найменшими?
2. Де розташувати телевежу, якщо плата для кожного Мумi-троля – максимальна вiдстань вiд телевежi до самої вiддаленої вiд неї хатинки?
3. Як змiниться вiдповiдь, якщо хатинки Мумi-тролей розташованi не на прямiй, а на площинi?[/hide]
1994 North Macedonia National Olympiad, 3
a) Let $ x_1, x_2, ..., x_n $ ($ n> 2 $) be negative real numbers and $ x_1 + x_2 + ... + x_n = m. $
Determine the maximum value of the sum
$ S = x_1x_2 + x_1x_3 + \dots + x_1x_n + x_2x_3 + x_2x_4 + \dots + x_2x_n + \dots + x_ {n-1} x_n. $
b) Let $ x_1, x_2, ..., x_n $ ($ n> 2 $) be nonnegative natural numbers and $ x_1 + x_2 + ... + x_n = m. $
Determine the maximum value of the sum
$ S = x_1x_2 + x_1x_3 + \dots + x_1x_n + x_2x_3 + x_2x_4 + \dots + x_2x_n + \dots + x_ {n-1} x_n. $
2018 Saudi Arabia IMO TST, 3
Consider the function $f (x) = (x - F_1)(x - F_2) ...(x -F_{3030})$ with $(F_n)$ is the Fibonacci sequence, which defined as $F_1 = 1, F_2 = 2$, $F_{n+2 }=F_{n+1} + F_n$, $n \ge 1$. Suppose that on the range $(F_1, F_{3030})$, the function $|f (x)|$ takes on the maximum value at $x = x_0$. Prove that $x_0 > 2^{2018}$.
2017 Saudi Arabia JBMO TST, 3
Let $BC$ be a chord of a circle $(O)$ such that $BC$ is not a diameter. Let $AE$ be the diameter perpendicular to $BC$ such that $A$ belongs to the larger arc $BC$ of $(O)$. Let $D$ be a point on the larger arc $BC$ of $(O)$ which is different from $A$. Suppose that $AD$ intersects $BC$ at $S$ and $DE$ intersects $BC$ at $T$. Let $F$ be the midpoint of $ST$ and $I$ be the second intersection point of the circle $(ODF)$ with the line $BC$.
1. Let the line passing through $I$ and parallel to $OD$ intersect $AD$ and $DE$ at $M$ and $N$, respectively. Find the maximum value of the area of the triangle $MDN$ when $D$ moves on the larger arc $BC$ of $(O)$ (such that $D \ne A$).
2. Prove that the perpendicular from $D$ to $ST$ passes through the midpoint of $MN$
2001 Estonia National Olympiad, 5
A table consisting of $9$ rows and $2001$ columns is filfed with integers $1,2,..., 2001$ in such a way that each of these integers occurs in the table exactly $9$ times and the integers in any column differ by no more than $3$. Find the maximum possible value of the minimal column sum (sum of the numbers in one column).
2015 Saudi Arabia IMO TST, 3
Let $a, b,c$ be positive real numbers satisfying the condition $$(x + y + z) \left( \frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right)= 10$$ Find the greatest value and the least value of
$$T = (x^2 + y^2 + z^2) \left(\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2}\right)$$
Trần Nam Dũng
1982 Polish MO Finals, 1
Find a way of arranging $n$ girls and $n$ boys around a round table for which $d_n-c_n$ is maximum, where dn is the number of girls sitting between two boys and $c_n$ is the number of boys sitting between two girls.
1993 Romania Team Selection Test, 4
For each integer $n > 3$ find all quadruples $(n_1,n_2,n_3,n_4)$ of positive integers with $n_1 +n_2 +n_3 +n_4 = n$ which maximize the expression $$\frac{n!}{n_1!n_2!n_3!n_4!}2^{ {n_1 \choose 2}+{n_2 \choose 2}+{n_3 \choose 2}+{n_4 \choose 2}+n_1n_2+n_2n_3+n_3n_4}$$
2000 Switzerland Team Selection Test, 9
Two given circles $k_1$ and $k_2$ intersect at points $P$ and $Q$.
Construct a segment $AB$ through $P$ with the endpoints at $k_1$ and $k_2$ for which $AP \cdot PB$ is maximal.
2012 Junior Balkan Team Selection Tests - Romania, 1
Let $a, b, c, d$ be distinct non-zero real numbers satisfying the following two conditions:
$ac = bd$ and $\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}= 4$.
Determine the largest possible value of the expression $\frac{a}{c}+\frac{c}{a}+\frac{b}{d}+\frac{d}{b}$.
2011 Tournament of Towns, 2
$49$ natural numbers are written on the board. All their pairwise sums are different. Prove that the largest of the numbers is greater than $600$.
[hide=original wording in Russian]На доске написаны 49 натуральных чисел. Все их попарные суммы различны. Докажите, что наибольшее из чисел больше 600[/hide]
Ukrainian TYM Qualifying - geometry, 2010.6
Find inside the triangle $ABC$, points $G$ and $H$ for which, respectively, the geometric mean and the harmonic mean of the distances to the sides of the triangle acquire maximum values. In which cases is the segment $GH$ parallel to one of the sides of the triangle? Find the length of such a segment $GH$.
1992 Czech And Slovak Olympiad IIIA, 5
The function $f : (0,1) \to R$ is defined by
$f(x) = x$ if $x$ is irrational,
$f(x) = \frac{p+1}{q}$ if $x =\frac{p}{q}$ , where $(p,q) = 1$.
Find the maximum value of $f$ on the interval $(7/8,8/9)$.
2019 Dutch IMO TST, 2
Determine all $4$-tuples $(a,b, c, d)$ of positive real numbers satisfying $a + b +c + d = 1$ and
$\max (\frac{a^2}{b},\frac{b^2}{a}) \cdot \max (\frac{c^2}{d},\frac{d^2}{c}) = (\min (a + b, c + d))^4$
2012 Estonia Team Selection Test, 5
Let $x, y, z$ be positive real numbers whose sum is $2012$. Find the maximum value of $$ \frac{(x^2 + y^2 + z^2)(x^3 + y^3 + z^3)}{(x^4 + y^4 + z^4)}$$
2002 Estonia National Olympiad, 4
Find the maximum length of a broken line on the surface of a unit cube, such that its links are the cube’s edges and diagonals of faces, the line does not intersect itself and passes no more than once through any vertex of the cube, and its endpoints are in two opposite vertices of the cube.
2017 Istmo Centroamericano MO, 5
Let $n$ be a positive integer. There is a board of $(n + 1) \times (n + 1)$ whose squares are numbered in a diagonal pattern, as as the picture shows. Chepito starts from the lower left square, and moving only up or to the right until he reaches the upper right box. During his tour, Chepito writes down the number of each box on the which made a change of direction, and in the end calculates the sum of all the numbers entered. Determine the maximum value of this sum.
[img]https://cdn.artofproblemsolving.com/attachments/e/d/f9dc43092a1407d6fe6f1b2c741af015079946.png[/img]
1961 Czech and Slovak Olympiad III A, 4
Consider a unit square $ABCD$ and a (variable) equilateral triangle $XYZ$ such that $X, Z$ lie on rays $AB, DC,$ respectively, and $Y$ lies on segment $AD$. Compute the area of triangle $XYZ$ in terms of $x=AX$ and determine its maximum and minimum.
2002 Estonia National Olympiad, 4
Let $a_1, ... ,a_5$ be real numbers such that at least $N$ of the sums $a_i+a_j$ ($i < j$) are integers. Find the greatest value of $N$ for which it is possible that not all of the sums $a_i+a_j$ are integers.
2022 Saudi Arabia JBMO TST, 2
Consider non-negative real numbers $a, b, c$ satisfying the condition $a^2 + b^2 + c^2 = 2$ . Find the maximum value of the following expression $$P=\frac{\sqrt{b^2+c^2}}{3-a}+\frac{\sqrt{c^2+a^2}}{3-b}+a+b-2022c$$
2008 Balkan MO Shortlist, G8
Let $P$ be a point in the interior of a triangle $ABC$ and let $d_a,d_b,d_c$ be its distances to $BC,CA,AB$ respectively. Prove that max $(AP, BP, CP) \ge \sqrt{d_a^2+d_b^2+d_c^2}$
2015 Czech-Polish-Slovak Junior Match, 1
In the right triangle $ABC$ with shorter side $AC$ the hypotenuse $AB$ has length $12$. Denote $T$ its centroid and $D$ the feet of altitude from the vertex $C$. Determine the size of its inner angle at the vertex $B$ for which the triangle $DTC$ has the greatest possible area.
2007 Thailand Mathematical Olympiad, 6
Let $M$ be the midpoint of a given segment $BC$. Point $A$ is chosen to maximize $\angle ABC$ while subject to the condition that $\angle MAC = 20^o$ . What is the ratio $BC/BA$ ?
2019 Dutch IMO TST, 2
Determine all $4$-tuples $(a,b, c, d)$ of positive real numbers satisfying $a + b +c + d = 1$ and
$\max (\frac{a^2}{b},\frac{b^2}{a}) \cdot \max (\frac{c^2}{d},\frac{d^2}{c}) = (\min (a + b, c + d))^4$