Found problems: 14842
Mid-Michigan MO, Grades 10-12, 2017
[b]p1.[/b] In the group of five people any subgroup of three persons contains at least two friends. Is it possible to divide these five people into two subgroups such that all members of any subgroup are friends?
[b]p2.[/b] Coefficients $a,b,c$ in expression $ax^2+bx+c$ are such that $b-c>a$ and $a \ne 0$. Is it true that equation $ax^2+bx+c=0$ always has two distinct real roots?
[b]p3.[/b] Point $D$ is a midpoint of the median $AF$ of triangle $ABC$. Line $CD$ intersects $AB$ at point $E$. Distances $|BD|=|BF|$. Show that $|AE|=|DE|$.
[b]p4.[/b] Real numbers $a,b$ satisfy inequality $a+b^5>ab^5+1$. Show that $a+b^7>ba^7+1$.
[b]p5.[/b] A positive number was rounded up to the integer and got the number that is bigger than the original one by $28\%$. Find the original number (find all solutions).
[b]p6.[/b] Divide a $5\times 5$ square along the sides of the cells into $8$ parts in such a way that all parts are different.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2011 IMO Shortlist, 2
Suppose that $1000$ students are standing in a circle. Prove that there exists an integer $k$ with $100 \leq k \leq 300$ such that in this circle there exists a contiguous group of $2k$ students, for which the first half contains the same number of girls as the second half.
[i]Proposed by Gerhard Wöginger, Austria[/i]
1985 Balkan MO, 3
Let $S$ be the set of all positive integers of the form $19a+85b$, where $a,b$ are arbitrary positive integers. On the real axis, the points of $S$ are colored in red and the remaining integer numbers are colored in green. Find, with proof, whether or not there exists a point $A$ on the real axis such that any two points with integer coordinates which are symmetrical with respect to $A$ have necessarily distinct colors.
2004 Romania Team Selection Test, 9
Let $n\geq 2$ be a positive integer, and $X$ a set with $n$ elements. Let $A_{1},A_{2},\ldots,A_{101}$ be subsets of $X$ such that the union of any $50$ of them has more than $\frac{50}{51}n$ elements.
Prove that among these $101$ subsets there exist $3$ subsets such that any two of them have a common element.
2001 All-Russian Olympiad Regional Round, 11.7
There is an infinite set of points $S$ on the plane, and any $1\times 1$ square contains a finite number of points from the set $S$. Prove that there are two different points $A$ and $B$ from $S$ such that for any other point $X$ from $S$ the following inequalities hold: $$|XA|, |XB| \ge 0.999|AB|.$$
2021 Iran Team Selection Test, 2
In the simple and connected graph $G$ let $x_i$ be the number of vertices with degree $i$. Let $d>3$ be the biggest degree in the graph $G$. Prove that if :
$$x_d \ge x_{d-1} + 2x_{d-2}+... +(d-1)x_1$$
Then there exists a vertex with degree $d$ such that after removing that vertex the graph $G$ is still connected.
Proposed by [i]Ali Mirzaie[/i]
2023 IMAR Test, P2
Consider $n\geqslant 6$ coplanar lines, no two parallel and no three concurrent. These lines split the plane into unbounded polygonal regions and polygons with pairwise disjoint interiors. Two polygons are non-adjacent if they do not share a side. Show that there are at least $(n-2)(n-3)/12$ pairwise non-adjacent polygons with the same number of sides each.
2008 Germany Team Selection Test, 2
Find all positive integers $ n$ for which the numbers in the set $ S \equal{} \{1,2, \ldots,n \}$ can be colored red and blue, with the following condition being satisfied: The set $ S \times S \times S$ contains exactly $ 2007$ ordered triples $ \left(x, y, z\right)$ such that:
[b](i)[/b] the numbers $ x$, $ y$, $ z$ are of the same color,
and
[b](ii)[/b] the number $ x \plus{} y \plus{} z$ is divisible by $ n$.
[i]Author: Gerhard Wöginger, Netherlands[/i]
2017 China Western Mathematical Olympiad, 4
Let $n$ and $k$ be given integers such that $n\ge k\ge 2$. Alice and Bob play a game on an $n$ by $n$ table with white cells. They take turns to pick a white cell and color it black. Alice moves first. The game ends as soon as there is at least one black cell in every $k$ by $k$ square after a player moves, who is declared the winner of the game. Who has the winning strategy?
2002 Brazil National Olympiad, 3
The squares of an $m\times n$ board are labeled from $1$ to $mn$ so that the squares labeled $i$ and $i+1$ always have a side in common. Show that for some $k$ the squares $k$ and $k+3$ have a side in common.
2007 Tournament Of Towns, 6
The audience arranges $n$ coins in a row. The sequence of heads and tails is chosen arbitrarily. The audience also chooses a number between $1$ and $n$ inclusive. Then the assistant turns one of the coins over, and the magician is brought in to examine the resulting sequence. By an agreement with the assistant beforehand, the magician tries to determine the number chosen by the audience.
[list][b](a)[/b] Prove that if this is possible for some $n$, then it is also possible for $2n$.
[b](b)[/b] Determine all $n$ for which this is possible.[/list]
2025 Iran MO (2nd Round), 6
Ali is hosting a large party. Together with his $n-1$ friends, $n$ people are seated around a circular table in a fixed order. Ali places $n$ apples for serving directly in front of himself and wants to distribute them among everyone. Since Ali and his friends dislike eating alone and won't start unless everyone receives an apple at the same time, in each step, each person who has at least one apple passes one apple to the first person to their right who doesn't have an apple (in the clockwise direction).
Find all values of $n$ such that after some number of steps, the situation reaches a point where each person has exactly one apple.
2003 ITAMO, 5
In each lattice-point of an $m \times n$ grid and in the centre of each of the formed unit squares a pawn is placed.
a) Find all such grids with exactly $500$ pawns.
b) Prove that there are infinitely many positive integers $k$ for which therer is no grid containing exactly $k$ pawns.
2013 China Northern MO, 8
$3n$ ($n \ge 2, n \in N$) people attend a gathering, in which any two acquaintances have exactly $n$ common acquaintances, and any two unknown people have exactly $2n$ common acquaintances. If three people know each other, it is called a [i]Taoyuan Group[/i].
(1) Find the number of all Taoyuan groups;
(2) Prove that these $3n$ people can be divided into three groups, with $n$ people in each group, and the three people obtained by randomly selecting one person from each group constitute a Taoyuan group.
Note: Acquaintance means that two people know each other, otherwise they are not acquaintances. Two people who know each other are called acquaintances.
2022 Thailand TST, 3
A hunter and an invisible rabbit play a game on an infinite square grid. First the hunter fixes a colouring of the cells with finitely many colours. The rabbit then secretly chooses a cell to start in. Every minute, the rabbit reports the colour of its current cell to the hunter, and then secretly moves to an adjacent cell that it has not visited before (two cells are adjacent if they share an edge). The hunter wins if after some finite time either:[list][*]the rabbit cannot move; or
[*]the hunter can determine the cell in which the rabbit started.[/list]Decide whether there exists a winning strategy for the hunter.
[i]Proposed by Aron Thomas[/i]
2022 Durer Math Competition Finals, 5
$n$ people sitting at a round table. In the beginning, everyone writes down a positive number $n$ on piece of paper in front of them. From now on, in every minute, they write down the number that they get if they subtract the number of their right-hand neighbour from their own number. They write down the new number and erase the original. Give those number $n$ that there exists an integer $k$ in a way that regardless of the starting numbers, after $k$ minutes, everyone will have a number that is divisible by $n$.
1994 Iran MO (2nd round), 1
The sides of an equilateral triangle $ABC$ are divided into $n$ equal parts $(n \geq 2) .$ For each point on a side, we draw the lines parallel to other sides of the triangle $ABC,$ e.g. for $n=3$ we have the following diagram:
[asy]
unitsize(150);
defaultpen(linewidth(0.7));
int n = 3; /* # of vertical lines, including AB */
pair A = (0,0), B = dir(-30), C = dir(30);
draw(A--B--C--cycle,linewidth(2)); dot(A,UnFill(0)); dot(B,UnFill(0)); dot(C,UnFill(0));
label("$A$",A,W); label("$C$",C,NE); label("$B$",B,SE);
for(int i = 1; i < n; ++i) {
draw((i*A+(n-i)*B)/n--(i*A+(n-i)*C)/n);
draw((i*B+(n-i)*A)/n--(i*B+(n-i)*C)/n);
draw((i*C+(n-i)*A)/n--(i*C+(n-i)*B)/n);
}
[/asy]
For each $n \geq 2,$ find the number of existing parallelograms.
2021 LMT Spring, B6
Maisy is at the origin of the coordinate plane. On her first step, she moves $1$ unit up. On her second step, she moves $ 1$ unit to the right. On her third step, she moves $2$ units up. On her fourth step, she moves $2$ units to the right. She repeats this pattern with each odd-numbered step being $ 1$ unit more than the previous step. Given that the point that Maisy lands on after her $21$st step can be written in the form $(x, y)$, find the value of $x + y$.
Proposed by Audrey Chun
2010 Argentina Team Selection Test, 1
In a football tournament there are $8$ teams, each of which plays exacly one match against every other team. If a team $A$ defeats team $B$, then $A$ is awarded $3$ points and $B$ gets $0$ points. If they end up in a tie, they receive $1$ point each.
It turned out that in this tournament, whenever a match ended up in a tie, the two teams involved did not finish with the same final score. Find the maximum number of ties that could have happened in such a tournament.
2012 QEDMO 11th, 10
Let there be three cups $A, B$ and $C$, which start with $a, b$ and $c$ (all of them are natural numbers) units of gallium filled. It is also believed that all cups are large enough to contain the total amount of gallium available. It is now allowed to move gallium from one cup to another cup, provided that the contents of the latter cup are exactly double.
(a) For which starting positions is it possible to empty one of the cups?
(b) For which starting positions is it possible to put all of the gallium in one cup?
1990 India National Olympiad, 4
Consider the collection of all three-element subsets drawn from the set $ \{1,2,3,4,\dots,299,300\}$.
Determine the number of those subsets for which the sum of the elements is a multiple of 3.
2018 Turkey Team Selection Test, 3
A Retired Linguist (R.L.) writes in the first move a word consisting of $n$ letters, which are all different. In each move, he determines the maximum $i$, such that the word obtained by reversing the first $i$ letters of the last word hasn't been written before, and writes this new word. Prove that R.L. can make $n!$ moves.
2025 Poland - First Round, 6
Positive integers $k, n$ and subsets $A_1, A_2, ..., A_k$ of the set $\{1, 2, ..., 2n\}$ are given. We will say that a pair of numbers $x, y$ is good, if $x<y$, $x, y\in \{1, 2, ..., 2n\}$ and there exists exactly one index $i\in \{1, 2, ..., 2n\}$, for which exactly one of $x, y$ belongs to $A_i$. Prove that there are at most $n^2$ good pairs.
2014 Belarus Team Selection Test, 3
$N$ cells are marked on an $n\times n$ table so that at least one marked cel is among any four cells of the table which form the figure [img]https://cdn.artofproblemsolving.com/attachments/2/2/090c32eb52df31eb81b9a86c63610e4d6531eb.png[/img] (tbe figure may be rotated). Find the smallest possible value of $N$.
(E. Barabanov)
1997 All-Russian Olympiad, 4
The numbers from $1$ to $100$ are arranged in a $10\times 10$ table so that any two adjacent numbers have sum no larger than $S$. Find the least value of $S$ for which this is possible.
[i]D. Hramtsov[/i]