This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1049

2018 Middle European Mathematical Olympiad, 5

Let $ABC$ be an acute-angled triangle with $AB<AC,$ and let $D$ be the foot of its altitude from$A,$ points $B'$ and $C'$ lie on the rays $AB$ and $AC,$ respectively , so that points $B',$ $C'$ and $D$ are collinear and points $B,$ $C,$ $B'$ and $C'$ lie on one circle with center $O.$ Prove that if $M$ is the midpoint of $BC$ and $H$ is the orthocenter of $ABC,$ then $DHMO$ is a parallelogram.

1976 Chisinau City MO, 133

A triangle with a parallelogram inside was placed in a square. Prove that the area of a parallelogram is not more than a quarter of a square.

2007 Iran MO (3rd Round), 5

Let $ ABC$ be a triangle. Squares $ AB_{c}B_{a}C$, $ CA_{b}A_{c}B$ and $ BC_{a}C_{b}A$ are outside the triangle. Square $ B_{c}B_{c}'B_{a}'B_{a}$ with center $ P$ is outside square $ AB_{c}B_{a}C$. Prove that $ BP,C_{a}B_{a}$ and $ A_{c}B_{c}$ are concurrent.

1999 AIME Problems, 2

Consider the parallelogram with vertices $(10,45),$ $(10,114),$ $(28,153),$ and $(28,84).$ A line through the origin cuts this figure into two congruent polygons. The slope of the line is $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

1966 IMO Longlists, 22

Let $P$ and $P^{\prime }$ be two parallelograms with equal area, and let their sidelengths be $a,$ $b$ and $a^{\prime },$ $b^{\prime }.$ Assume that $a^{\prime }\leq a\leq b\leq b^{\prime },$ and moreover, it is possible to place the segment $b^{\prime }$ such that it completely lies in the interior of the parallelogram $P.$ Show that the parallelogram $P$ can be partitioned into four polygons such that these four polygons can be composed again to form the parallelogram $% P^{\prime }.$

1992 AMC 12/AHSME, 24

Let $ABCD$ be a parallelogram of area $10$ with $AB = 3$ and $BC = 5$. Locate $E$, $F$ and $G$ on segments $\overline{AB}$, $\overline{BC}$ and $\overline{AD}$, respectively, with $AE = BF = AG = 2$. Let the line through $G$ parallel to $\overline{EF}$ intersect $\overline{CD}$ at $H$. The area of the quadrilateral $EFHG$ is $ \textbf{(A)}\ 4\qquad\textbf{(B)}\ 4.5\qquad\textbf{(C)}\ 5\qquad\textbf{(D)}\ 5.5\qquad\textbf{(E)}\ 6 $

2006 China Team Selection Test, 1

Let the intersections of $\odot O_1$ and $\odot O_2$ be $A$ and $B$. Point $R$ is on arc $AB$ of $\odot O_1$ and $T$ is on arc $AB$ on $\odot O_2$. $AR$ and $BR$ meet $\odot O_2$ at $C$ and $D$; $AT$ and $BT$ meet $\odot O_1$ at $Q$ and $P$. If $PR$ and $TD$ meet at $E$ and $QR$ and $TC$ meet at $F$, then prove: $AE \cdot BT \cdot BR = BF \cdot AT \cdot AR$.

Durer Math Competition CD Finals - geometry, 2012.C3

Given a convex quadrilateral whose opposite sides are not parallel, and giving an internal point $P$. Find a parallelogram whose vertices are on the side lines of the rectangle and whose center is $P$. Give a method by which we can construct it (provided there is one). [img]https://1.bp.blogspot.com/-t4aCJza0LxI/X9j1qbSQE4I/AAAAAAAAMz4/V9pr7Cd22G4F320nyRLZMRnz18hMw9NHQCLcBGAsYHQ/s0/2012%2BDurer%2BC3.png[/img]

1941 Eotvos Mathematical Competition, 2

Prove that if all four vertices of a parallelogram are lattice points and there are some other lattice points in or on the parallelogram, then its area exceeds $1$.

Kyiv City MO 1984-93 - geometry, 1986.8.2

A rectangle is said to be inscribed in a parallelogram if its vertices lie one on each side of the parallelogram. On the larger side $AB$ of the parallelogram $ABCD$, find all those points $K$ that are the vertices of the rectangles inscribed in $ABCD$.

1993 Polish MO Finals, 2

A circle center $O$ is inscribed in the quadrilateral $ABCD$. $AB$ is parallel to and longer than $CD$ and has midpoint $M$. The line $OM$ meets $CD$ at $F$. $CD$ touches the circle at $E$. Show that $DE = CF$ iff $AB = 2CD$.

1972 USAMO, 5

A given convex pentagon $ ABCDE$ has the property that the area of each of five triangles $ ABC, BCD, CDE, DEA$, and $ EAB$ is unity [i](equal to 1)[/i]. Show that all pentagons with the above property have the same area, and calculate that area. Show, furthermore, that there are infinitely many non-congruent pentagons having the above area property.

1985 Traian Lălescu, 1.4

Let $ ABCD $ be a convex quadrilateral, and $ P $ be a point that isn't found on any of the lines formed by the sides of the quadrilateral. Prove that the centers of mass of the triangles $ PAB, PBC, PCD $ and $ PDA, $ form a parallelogram, and calculate the legths of its sides in terms of its diagonals.

2023 Junior Balkan Team Selection Tests - Moldova, 2

Let $\Omega$ be the circumscribed circle of the acute triangle $ABC$ and $ D $ a point the small arc $BC$ of $\Omega$. Points $E$ and $ F $ are on the sides $ AB$ and $AC$, respectively, such that the quadrilateral $CDEF$ is a parallelogram. Point $G$ is on the small arc $AC$ such that lines $DC$ and $BG$ are parallel. Prove that the angles $GFC$ and $BAC$ are equal.

2006 Germany Team Selection Test, 3

Let $ABCD$ be a parallelogram. A variable line $g$ through the vertex $A$ intersects the rays $BC$ and $DC$ at the points $X$ and $Y$, respectively. Let $K$ and $L$ be the $A$-excenters of the triangles $ABX$ and $ADY$. Show that the angle $\measuredangle KCL$ is independent of the line $g$. [i]Proposed by Vyacheslev Yasinskiy, Ukraine[/i]

2025 EGMO, 4

Let $ABC$ be an acute triangle with incentre $I$ and $AB \neq AC$. Let lines $BI$ and $CI$ intersect the circumcircle of $ABC$ at $P \neq B$ and $Q \neq C$, respectively. Consider points $R$ and $S$ such that $AQRB$ and $ACSP$ are parallelograms (with $AQ \parallel RB, AB \parallel QR, AC \parallel SP$, and $AP \parallel CS$). Let $T$ be the point of intersection of lines $RB$ and $SC$. Prove that points $R, S, T$, and $I$ are concyclic.

1994 Polish MO Finals, 2

A parallelopiped has vertices $A_1, A_2, ... , A_8$ and center $O$. Show that: \[ 4 \sum_{i=1}^8 OA_i ^2 \leq \left(\sum_{i=1}^8 OA_i \right) ^2 \]

2010 Contests, 2

Let $ABC$ be an acute triangle, $H$ its orthocentre, $D$ a point on the side $[BC]$, and $P$ a point such that $ADPH$ is a parallelogram. Show that $\angle BPC > \angle BAC$.

2013 ITAMO, 5

$ABC$ is an isosceles triangle with $AB=AC$ and the angle in $A$ is less than $60^{\circ}$. Let $D$ be a point on $AC$ such that $\angle{DBC}=\angle{BAC}$. $E$ is the intersection between the perpendicular bisector of $BD$ and the line parallel to $BC$ passing through $A$. $F$ is a point on the line $AC$ such that $FA=2AC$ ($A$ is between $F$ and $C$). Show that $EB$ and $AC$ are parallel and that the perpendicular from $F$ to $AB$, the perpendicular from $E$ to $AC$ and $BD$ are concurrent.

2012 Sharygin Geometry Olympiad, 4

Given triangle $ABC$. Point $M$ is the midpoint of side $BC$, and point $P$ is the projection of $B$ to the perpendicular bisector of segment $AC$. Line $PM$ meets $AB$ in point $Q$. Prove that triangle $QPB$ is isosceles.

2002 All-Russian Olympiad, 2

A quadrilateral $ABCD$ is inscribed in a circle $\omega$. The tangent to $\omega$ at $A$ intersects the ray $CB$ at $K$, and the tangent to $\omega$ at $B$ intersects the ray $DA$ at $M$. Prove that if $AM=AD$ and $BK=BC$, then $ABCD$ is a trapezoid.

2014 Chile National Olympiad, 5

Prove that if a quadrilateral $ABCD$ can be cut into a finite number of parallelograms, then $ABCD$ is a parallelogram.

2025 Belarusian National Olympiad, 8.8

On the side $CD$ of parallelogram $ABCD$ a point $E$ is chosen. The perpendicular from $C$ to $BE$ and the perpendicular from $D$ to $AE$ intersect at $P$. Point $M$ is the midpoint of $PE$. Prove that the perpendicular from $M$ to $CD$ passes through the center of parallelogram $ABCD$. [i]Matsvei Zorka[/i]

2002 Iran MO (3rd Round), 6

$M$ is midpoint of $BC$.$P$ is an arbitary point on $BC$. $C_{1}$ is tangent to big circle.Suppose radius of $C_{1}$ is $r_{1}$ Radius of $C_{4}$ is equal to radius of $C_{1}$ and $C_{4}$ is tangent to $BC$ at P. $C_{2}$ and $C_{3}$ are tangent to big circle and line $BC$ and circle $C_{4}$. [img]http://aycu01.webshots.com/image/4120/2005120338156776027_rs.jpg[/img] Prove : \[r_{1}+r_{2}+r_{3}=R\] ($R$ radius of big circle)

2007 Danube Mathematical Competition, 2

Let $ ABCD$ be an inscribed quadrilateral and let $ E$ be the midpoint of the diagonal $ BD$. Let $ \Gamma_1,\Gamma_2,\Gamma_3,\Gamma_4$ be the circumcircles of triangles $ AEB$, $ BEC$, $ CED$ and $ DEA$ respectively. Prove that if $ \Gamma_4$ is tangent to the line $ CD$, then $ \Gamma_1,\Gamma_2,\Gamma_3$ are tangent to the lines $ BC,AB,AD$ respectively.