Found problems: 14842
1967 German National Olympiad, 6
Prove the following theorem:
If there are $n$ pairs of different points $P_i$, $i = 1, 2, ..., n$, $n > 2$ in three dimensions space, such that each of them is at a smaller distance from one and the same point $Q$ than any other $P_i$, then $n < 15$.
2019 Harvard-MIT Mathematics Tournament, 9
How many ways can you fill a $3 \times 3$ square grid with nonnegative integers such that no [i]nonzero[/i] integer appears more than once in the same row or column and the sum of the numbers in every row and column equals 7?
2007 Irish Math Olympiad, 4
Air Michael and Air Patrick operate direct flights connecting Belfast, Cork, Dublin, Galway, Limerick, and Waterord. For each pair of cities exactly one of the airlines operates the route (in both directions) connecting the cities. Prove that there are four cities for which one of the airlines operates a round trip. (Note that a round trip of four cities $ P,Q,R,$ and $ S$, is a journey that follows the path $ P \rightarrow Q \rightarrow R \rightarrow S \rightarrow P$.)
2016 LMT, Team Round
[b]p1.[/b] Let $X,Y ,Z$ be nonzero real numbers such that the quadratic function $X t^2 - Y t + Z = 0$ has the unique root $t = Y$ . Find $X$.
[b]p2.[/b] Let $ABCD$ be a kite with $AB = BC = 1$ and $CD = AD =\sqrt2$. Given that $BD =\sqrt5$, find $AC$.
[b]p3.[/b] Find the number of integers $n$ such that $n -2016$ divides $n^2 -2016$. An integer $a$ divides an integer $b$ if there exists a unique integer $k$ such that $ak = b$.
[b]p4.[/b] The points $A(-16, 256)$ and $B(20, 400)$ lie on the parabola $y = x^2$ . There exists a point $C(a,a^2)$ on the parabola $y = x^2$ such that there exists a point $D$ on the parabola $y = -x^2$ so that $ACBD$ is a parallelogram. Find $a$.
[b]p5.[/b] Figure $F_0$ is a unit square. To create figure $F_1$, divide each side of the square into equal fifths and add two new squares with sidelength $\frac15$ to each side, with one of their sides on one of the sides of the larger square. To create figure $F_{k+1}$ from $F_k$ , repeat this same process for each open side of the smallest squares created in $F_n$. Let $A_n$ be the area of $F_n$. Find $\lim_{n\to \infty} A_n$.
[img]https://cdn.artofproblemsolving.com/attachments/8/9/85b764acba2a548ecc61e9ffc29aacf24b4647.png[/img]
[b]p6.[/b] For a prime $p$, let $S_p$ be the set of nonnegative integers $n$ less than $p$ for which there exists a nonnegative integer $k$ such that $2016^k -n$ is divisible by $p$. Find the sum of all $p$ for which $p$ does not divide the sum of the elements of $S_p$ .
[b]p7. [/b] Trapezoid $ABCD$ has $AB \parallel CD$ and $AD = AB = BC$. Unit circles $\gamma$ and $\omega$ are inscribed in the trapezoid such that circle $\gamma$ is tangent to $CD$, $AB$, and $AD$, and circle $\omega$ is tangent to $CD$, $AB$, and $BC$. If circles $\gamma$ and $\omega$ are externally tangent to each other, find $AB$.
[b]p8.[/b] Let $x, y, z$ be real numbers such that $(x+y)^2+(y+z)^2+(z+x)^2 = 1$. Over all triples $(x, y, z)$, find the maximum possible value of $y -z$.
[b]p9.[/b] Triangle $\vartriangle ABC$ has sidelengths $AB = 13$, $BC = 14$, and $CA = 15$. Let $P$ be a point on segment $BC$ such that $\frac{BP}{CP} = 3$, and let $I_1$ and $I_2$ be the incenters of triangles $\vartriangle ABP$ and $\vartriangle ACP$. Suppose that the circumcircle of $\vartriangle I_1PI_2$ intersects segment $AP$ for a second time at a point $X \ne P$. Find the length of segment $AX$.
[b]p10.[/b] For $1 \le i \le 9$, let Ai be the answer to problem i from this section. Let $(i_1,i_2,... ,i_9)$ be a permutation of $(1, 2,... , 9)$ such that $A_{i_1} < A_{i_2} < ... < A_{i_9}$. For each $i_j$ , put the number $i_j$ in the box which is in the $j$th row from the top and the $j$th column from the left of the $9\times 9$ grid in the bonus section of the answer sheet. Then, fill in the rest
of the squares with digits $1, 2,... , 9$ such that
$\bullet$ each bolded $ 3\times 3$ grid contains exactly one of each digit from $ 1$ to $9$,
$\bullet$ each row of the $9\times 9$ grid contains exactly one of each digit from $ 1$ to $9$, and
$\bullet$ each column of the $9\times 9$ grid contains exactly one of each digit from $ 1$ to $9$.
PS. You had better use hide for answers.
2024 Indonesia TST, 3
Let $n\geqslant 2$ be a positive integer. Paul has a $1\times n^2$ rectangular strip consisting of $n^2$ unit squares, where the $i^{\text{th}}$ square is labelled with $i$ for all $1\leqslant i\leqslant n^2$. He wishes to cut the strip into several pieces, where each piece consists of a number of consecutive unit squares, and then [i]translate[/i] (without rotating or flipping) the pieces to obtain an $n\times n$ square satisfying the following property: if the unit square in the $i^{\text{th}}$ row and $j^{\text{th}}$ column is labelled with $a_{ij}$, then $a_{ij}-(i+j-1)$ is divisible by $n$.
Determine the smallest number of pieces Paul needs to make in order to accomplish this.
2016 PUMaC Combinatorics B, 2
Every day, Kaori flips a fair coin. She practices her violin if and only if the coin comes up heads. The probability that she practices at least five days this week can be written in simplest form as $\frac{m}{n}$. Compute $m + n$
1998 China Team Selection Test, 2
Let $n$ be a natural number greater than 2. $l$ is a line on a plane. There are $n$ distinct points $P_1$, $P_2$, …, $P_n$ on $l$. Let the product of distances between $P_i$ and the other $n-1$ points be $d_i$ ($i = 1, 2,$ …, $n$). There exists a point $Q$, which does not lie on $l$, on the plane. Let the distance from $Q$ to $P_i$ be $C_i$ ($i = 1, 2,$ …, $n$). Find $S_n = \sum_{i = 1}^{n} (-1)^{n-i} \frac{c_i^2}{d_i}$.
2007 Turkey MO (2nd round), 2
Some unit squares of $ 2007\times 2007 $ square board are colored. Let $ (i,j) $ be a unit square belonging to the $ith$ line and $jth$ column and $ S_{i,j} $ be the set of all colored unit squares $(x,y)$ satisfying $ x\leq i, y\leq j $. At the first step in each colored unit square $(i,j)$ we write the number of colored unit squares in $ S_{i,j} $ . In each step, in each colored unit square $(i,j)$ we write the sum of all numbers written in $ S_{i,j} $ in the previous step. Prove that after finite number of steps, all numbers in the colored unit squares will be odd.
2011 JBMO Shortlist, 8
Determine the polygons with $n$ sides $(n \ge 4)$, not necessarily convex, which satisfy the property that the reflection of every vertex of polygon with respect to every diagonal of the polygon does not fall outside the polygon.
[b]Note:[/b] Each segment joining two non-neighboring vertices of the polygon is a diagonal. The reflection is considered with respect to the support line of the diagonal.
2015 International Zhautykov Olympiad, 1
Each point with integral coordinates in the plane is coloured white or blue. Prove that one can choose a colour so that for every positive integer $ n $ there exists a triangle of area $ n $ having its vertices of the chosen colour.
1974 Dutch Mathematical Olympiad, 5
For every $n \in N$, is it possible to make a figure consisting of $n+1$ points, where $n$ points lie on one line and one point is not on that line, so that each pair of those points is an integer distance from each other?
2024 Princeton University Math Competition, A5 / B7
It is election year in PUMACland, and for the presidential election there are $27$ people voting for either Vraj Patel or Vedant Shah. Each voter selects a candidate uniformly at random, and their ballots are labeled $1$ through $27.$
The election takes place as a series of rounds. In each round, the surviving ballots are sorted by label and separated into consecutive groups of three. From each group, the person with the most votes wins, and exactly one of the ballots bearing the winner’s name is allowed to proceed to the next round. This procedure continues until a single ballot remains, and the person whose name is on the ballot wins.
Alice, Bob, and Carol submitted ballots numbered $1, 15,$ and $27,$ respectively. Suppose that Alice, Bob, and Carol had all flipped their votes. If the probability that the outcome of the election would have changed is $\tfrac{a}{b}$ for relatively prime positive integers $a, b,$ find $a + b.$
2018 Chile National Olympiad, 3
With $2018$ points, a network composed of hexagons is formed as a sample the figure:
[asy]
unitsize(1 cm);
int i;
path hex = dir(30)--(0,1)--dir(150)--dir(210)--(0,-1)--dir(330)--cycle;
draw(hex);
draw(shift((sqrt(3),0))*(hex));
draw(shift((2*sqrt(3),0))*(hex));
draw(shift((4*sqrt(3),0))*(hex));
draw(shift((5*sqrt(3),0))*(hex));
dot((3*sqrt(3) - 0.3,0));
dot((3*sqrt(3),0));
dot((3*sqrt(3) + 0.3,0));
dot(dir(150));
dot(dir(210));
for (i = 0; i <= 5; ++i) {
if (i != 3) {
dot((0,1) + i*(sqrt(3),0));
dot(dir(30) + i*(sqrt(3),0));
dot(dir(330) + i*(sqrt(3),0));
dot((0,-1) + i*(sqrt(3),0));
}
}
dot(dir(150) + 4*(sqrt(3),0));
dot(dir(210) + 4*(sqrt(3),0));
[/asy]
A bee and a fly play the following game:
initially the bee chooses one of the $2018$ dots and paints it red, then the fly chooses one of the $2017$ unpainted dots and paint it blue. Then the bee chooses an unpainted point and paints it red and then the fly chooses an unpainted one and paints it blue and so they alternate. If at the end of the game there is an equilateral triangle with red vertices, the bee wins, otherwise Otherwise the fly wins.
Determine which of the two insects has a winning strategy.
2019 Peru IMO TST, 1
In each cell of a chessboard with $2$ rows and $2019$ columns a real number is written so that:
[LIST]
[*] There are no two numbers written in the first row that are equal to each other.[/*]
[*] The numbers written in the second row coincide with (in some another order) the numbers written in the first row.[/*]
[*] The two numbers written in each column are different and they add up to a rational number.[/*]
[/LIST]
Determine the maximum quantity of irrational numbers that can be in the chessboard.
MMPC Part II 1958 - 95, 1995
[b]p1.[/b] (a) Brian has a big job to do that will take him two hours to complete. He has six friends who can help him. They all work at the same rate, somewhat slower than Brian. All seven working together can finish the job in $45$ minutes. How long will it take to do the job if Brian worked with only three of his friends?
(b) Brian could do his next job in $N$ hours, working alone. This time he has an unlimited list of friends who can help him, but as he moves down the list, each friend works more slowly than those above on the list. The first friend would take $kN$ ($k > 1$) hours to do the job alone, the second friend would take $k^2N$ hours alone, the third friend would take $k^3N$ hours alone, etc. Theoretically, if Brian could get all his infinite number of friends to help him, how long would it take to complete the job?
[b]p2.[/b] (a) The centers of two circles of radius $1$ are two opposite vertices of a square of side $1$. Find the area of the intersection of the two circles.
(b) The centers of two circles of radius $1$ are two consecutive vertices of a square of side $1$. Find the area of the intersection of the two circles and the square.
(c) The centers of four circles of radius $1$ are the vertices of a square of side $1$. Find the area of the intersection of the four circles.
[b]p3.[/b] For any real number$ x$, $[x]$ denotes the greatest integer that does not exceed $x$. For example, $[7.3] = 7$, $[10/3] = 3$, $[5] = 5$. Given natural number $N$, denote as $f(N)$ the following sum of $N$ integers:
$$f(N) = [N/1] + [N/2] + [N/3] + ... + [N/n].$$
(a) Evaluate $f(7) - f(6)$.
(b) Evaluate $f(35) - f(34)$.
(c) Evaluate (with explanation) $f(1996) - f(1995)$.
[b]p4.[/b] We will say that triangle $ABC$ is good if it satisfies the following conditions: $AB = 7$, the other two sides are integers, and $\cos A =\frac27$.
(a) Find the sides of a good isosceles triangle.
(b) Find the sides of a good scalene (i.e. non-isosceles) triangle.
(c) Find the sides of a good scalene triangle other than the one you found in (b) and prove that any good triangle is congruent to one of the three triangles you have found.
[b]p5.[/b] (a) A bag contains nine balls, some of which are white, the others are black. Two balls are drawn at random from the bag, without replacement. It is found that the probability that the two balls are of the same color is the same as the probability that they are of different colors. How many of the nine balls were of one color and how many of the other color?
(b) A bag contains $N$ balls, some of which are white, the others are black. Two balls are drawn at random from the bag, without replacement. It is found that the probability that the two balls are of the same color is the same as the probability that they are of different colors. It is also found that $180 < N < 220$. Find the exact value of $N$ and determine how many of the $N$ balls were of one color and how many of the other color.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2002 Federal Math Competition of S&M, Problem 4
Each of the $15$ coaches ranked the $50$ selected football players on the places from $1$ to $50$. For each football player, the highest and lowest obtained ranks differ by at most $5$. For each of the players, the sum of the ranks he obtained is computed, and the sums are denoted by $S_1\le S_2\le\ldots\le S_{50}$. Find the largest possible value of $S_1$.
1998 Finnish National High School Mathematics Competition, 2
There are $11$ members in the competetion committee. The problem set is kept in a safe having several locks.
The committee members have been provided with keys in such a way that every six members can open the safe, but no five members can do that.
What is the smallest possible number of locks, and how many keys are needed in that case?
2015 Macedonia National Olympiad, Problem 3
All contestants at one contest are sitting in $n$ columns and are forming a "good" configuration. (We define one configuration as "good" when we don't have 2 friends sitting in the same column). It's impossible for all the students to sit in $n-1$ columns in a "good" configuration. Prove that we can always choose contestants $M_1,M_2,...,M_n$ such that $M_i$ is sitting in the $i-th$ column, for each $i=1,2,...,n$ and $M_i$ is friend of $M_{i+1}$ for each $i=1,2,...,n-1$.
1999 Bundeswettbewerb Mathematik, 4
It is known that there are polyhedrons whose faces are more numbered than the vertices. Find the smallest number of triangular faces that such a polyhedron can have.
1986 Kurschak Competition, 1
Any two members of a club with $3n+1$ people plays ping-pong, tennis or chess with each other. Everyone has exactly $n$ partners who plays ping-pong, $n$ who play tennis and $n$ who play chess.
Prove that we can choose three members of the club who play three different games amongst each other.
2009 Stars Of Mathematics, 5
The cells of a $(n^2-n+1)\times(n^2-n+1)$ matrix are coloured using $n$ colours. A colour is called [i]dominant[/i] on a row (or a column) if there are at least $n$ cells of this colour on that row (or column). A cell is called [i]extremal[/i] if its colour is [i]dominant [/i] both on its row, and its column. Find all $n \ge 2$ for which there is a colouring with no [i]extremal [/i] cells.
Iurie Boreico (Moldova)
2003 Mid-Michigan MO, 10-12
[b]p1.[/b] The length of the first side of a triangle is $1$, the length of the second side is $11$, and the length of the third side is an integer. Find that integer.
[b]p2.[/b] Suppose $a, b$, and $c$ are positive numbers such that $a + b + c = 1$. Prove that $ab + ac + bc \le \frac13$.
[b]p3.[/b] Prove that $1 +\frac12+\frac13+\frac14+ ... +\frac{1}{100}$ is not an integer.
[b]p4.[/b] Find all of the four-digit numbers n such that the last four digits of $n^2$ coincide with the digits of $n$.
[b]p5.[/b] (Bonus) Several ants are crawling along a circle with equal constant velocities (not necessarily in the same direction). If two ants collide, both immediately reverse direction and crawl with the same velocity. Prove that, no matter how many ants and what their initial positions are, they will, at some time, all simultaneously return to the initial positions.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2015 Singapore Senior Math Olympiad, 2
There are $n=1681$ children, $a_1,a_2,...,a_{n}$ seated clockwise in a circle on the floor. The teacher walks behind the children in the clockwise direction with a box of $1000$ candies. She drops a candy behind the first child $a_1$. She then skips one child and drops a candy behind the third child, $a_3$. Now she skips two children and drops a candy behind the next child, $a_6$. She continues this way, at each stage skipping one child more than at the preceding stage before dropping a candy behind the next child. How many children will never receive a candy? Justify your answer.
2020 Saint Petersburg Mathematical Olympiad, 6.
On a social network, no user has more than ten friends ( the state "friendship" is symmetrical). The network is connected: if, upon learning interesting news a user starts sending it to its friends, and these friends to their own friends and so on, then at the end, all users hear about the news.
Prove that the network administration can divide users into groups so that the following conditions are met:
[list]
[*] each user is in exactly one group
[*] each group is connected in the above sense
[*] one of the groups contains from $1$ to $100$ members and the remaining from $100$ to $900$.
[/list]
2016 South East Mathematical Olympiad, 4
For any four points on a plane, if the areas of four triangles formed are different positive integer and six distances between those four points are also six different positive integers, then the convex closure of $4$ points is called a "lotus design."
(1) Construct an example of "lotus design". Also what are areas and distances in your example?
(2) Prove that there are infinitely many "lotus design" which are not similar.