This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2017 Harvard-MIT Mathematics Tournament, 10

Five equally skilled tennis players named Allen, Bob, Catheryn, David, and Evan play in a round robin tournament, such that each pair of people play exactly once, and there are no ties. In each of the ten games, the two players both have a 50% chance of winning, and the results of the games are independent. Compute the probability that there exist four distinct players $P_1$, $P_2$, $P_3$, $P_4$ such that $P_i$ beats $P_{i+1}$ for $i=1, 2, 3, 4$. (We denote $P_5=P_1$).

2006 China Team Selection Test, 3

$d$ and $n$ are positive integers such that $d \mid n$. The n-number sets $(x_1, x_2, \cdots x_n)$ satisfy the following condition: (1) $0 \leq x_1 \leq x_2 \leq \cdots \leq x_n \leq n$ (2) $d \mid (x_1+x_2+ \cdots x_n)$ Prove that in all the n-number sets that meet the conditions, there are exactly half satisfy $x_n=n$.

2010 ELMO Shortlist, 6

Hamster is playing a game on an $m \times n$ chessboard. He places a rook anywhere on the board and then moves it around with the restriction that every vertical move must be followed by a horizontal move and every horizontal move must be followed by a vertical move. For what values of $m,n$ is it possible for the rook to visit every square of the chessboard exactly once? A square is only considered visited if the rook was initially placed there or if it ended one of its moves on it. [i]Brian Hamrick.[/i]

TNO 2008 Junior, 8

A traffic accident involved three cars: one blue, one green, and one red. Three witnesses spoke to the police and gave the following statements: **Person 1:** The red car was guilty, and either the green or the blue one was involved. **Person 2:** Either the green car or the red car was guilty, but not both. **Person 3:** Only one of the cars was guilty, but it was not the blue one. The police know that at least one car was guilty and that at least one car was not. However, the police do not know if any of the three witnesses lied. Which car(s) were responsible for the accident?

DMM Devil Rounds, 2010

[b]p1.[/b] Find all $x$ such that $(\ln (x^4))^2 = (\ln (x))^6$. [b]p2.[/b] On a piece of paper, Alan has written a number $N$ between $0$ and $2010$, inclusive. Yiwen attempts to guess it in the following manner: she can send Alan a positive number $M$, which Alan will attempt to subtract from his own number, which we will call $N$. If $M$ is less than or equal $N$, then he will erase $N$ and replace it with $N -M$. Otherwise, Alan will tell Yiwen that $M > N$. What is the minimum number of attempts that Yiwen must make in order to determine uniquely what number Alan started with? [b]p3.[/b] How many positive integers between $1$ and $50$ have at least $4$ distinct positive integer divisors? (Remember that both $1$ and $n$ are divisors of $n$.) [b]p4.[/b] Let $F_n$ denote the $n^{th}$ Fibonacci number, with $F_0 = 0$ and $F_1 = 1$. Find the last digit of $$\sum^{97!+4}_{i=0}F_i.$$ [b]p5.[/b] Find all prime numbers $p$ such that $2p + 1$ is a perfect cube. [b]p6.[/b] What is the maximum number of knights that can be placed on a $9\times 9$ chessboard such that no two knights attack each other? [b]p7.[/b] $S$ is a set of $9$ consecutive positive integers such that the sum of the squares of the $5$ smallest integers in the set is the sum of the squares of the remaining $4$. What is the sum of all $9$ integers? [b]p8.[/b] In the following infinite array, each row is an arithmetic sequence, and each column is a geometric sequence. Find the sum of the infinite sequence of entries along the main diagonal. [img]https://cdn.artofproblemsolving.com/attachments/5/1/481dd1e496fed6931ee2912775df630908c16e.png[/img] [b]p9.[/b] Let $x > y > 0$ be real numbers. Find the minimum value of $\frac{x}{y} + \frac{4x}{x-y}$ . [b]p10.[/b] A regular pentagon $P = A_1A_2A_3A_4A_5$ and a square $S = B_1B_2B_3B_4$ are both inscribed in the unit circle. For a given pentagon $P$ and square $S$, let $f(P, S)$ be the minimum length of the minor arcs $A_iB_j$ , for $1 \le i \le 5$ and $1 \le j \le4$. Find the maximum of $f(P, S)$ over all pairs of shapes. [b]p11.[/b] Find the sum of the largest and smallest prime factors of $9^4 + 3^4 + 1$. [b]p12.[/b] A transmitter is sending a message consisting of $4$ binary digits (either ones or zeros) to a receiver. Unfortunately, the transmitter makes errors: for each digit in the message, the probability that the transmitter sends the correct digit to the receiver is only $80\%$. (Errors are independent across all digits.) To avoid errors, the receiver only accepts a message if the sum of the first three digits equals the last digit modulo $2$. If the receiver accepts a message, what is the probability that the message was correct? [b]p13.[/b] Find the integer $N$ such that $$\prod^{8}_{i=0}\sec \left( \frac{\pi}{9}2^i \right)= N.$$ PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2011 IMO, 4

Let $n > 0$ be an integer. We are given a balance and $n$ weights of weight $2^0, 2^1, \cdots, 2^{n-1}$. We are to place each of the $n$ weights on the balance, one after another, in such a way that the right pan is never heavier than the left pan. At each step we choose one of the weights that has not yet been placed on the balance, and place it on either the left pan or the right pan, until all of the weights have been placed. Determine the number of ways in which this can be done. [i]Proposed by Morteza Saghafian, Iran[/i]

1987 IMO Shortlist, 2

At a party attended by $n$ married couples, each person talks to everyone else at the party except his or her spouse. The conversations involve sets of persons or cliques $C_1, C_2, \cdots, C_k$ with the following property: no couple are members of the same clique, but for every other pair of persons there is exactly one clique to which both members belong. Prove that if $n \geq 4$, then $k \geq 2n$. [i]Proposed by USA.[/i]

Mexican Quarantine Mathematical Olympiad, #6

Oriol has a finite collection of cards, each one with a positive integer written on it. We say the collection is $n$-[i]complete[/i] if for any integer $k$ from $1$ to $n$ (inclusive), he can choose some cards such that the sum of the numbers on them is exactly $k$. Suppose that Oriol's collection is $n$-complete, but it stops being $n$-complete if any card is removed from it. What is the maximum possible sum of the numbers on all the cards? [i]Proposed by Ariel García[/i]

1950 Moscow Mathematical Olympiad, 187

Is it possible to draw $10$ bus routes with stops such that for any $8$ routes there is a stop that does not belong to any of the routes, but any $9$ routes pass through all the stops?

1993 Moldova Team Selection Test, 6

The numbers $1,2,...,2n-1,2n$ are divided into two disjoint sets, $a_1 < a_2 < ... < a_n$ and $b_1 > b_2 > ... > b_n$. Prove that $$|a_1 - b_1| + |a_2 - b_2| + ... + |a_n - b_n| = n^2.$$

2019 Jozsef Wildt International Math Competition, W. 28

In a room, we have 2019 aligned switches, connected to 2019 light bulbs, all initially switched on. Then, 2019 people enter the room one by one, performing the operation: The first, uses all the switches; the second, every second switch; the third, every third switch, and so on. How many lightbulbs remain switched on, after all the people entered ?

2010 Pan African, 1

Seven distinct points are marked on a circle of circumference $c$. Three of the points form an equilateral triangle and the other four form a square. Prove that at least one of the seven arcs into which the seven points divide the circle has length less than or equal $\frac{c}{24}$.

LMT Speed Rounds, 8

To celebrate the $20$th LMT, the LHSMath Team bakes a cake. Each of the $n$ bakers places $20$ candles on the cake. When they count, they realize that there are $(n -1)!$ total candles on the cake. Find $n$. [i]Proposed by Christopher Cheng[/i]

2020 Durer Math Competition Finals, 13

In the game of Yahtzee , players have to achieve various combinations of values with $5$ dice. In a round, a player can roll the dice three times. At the second and third rolls, he can choose which dice to re-roll and which to keep. What is the probability that a player achieves at least four $6$’s in a round, given that he plays with the optimal strategy to maximise this probability? Writing the answer as $p/q$ where $p$ and $q$ are coprime, you should submit the sum of all prime factors of $p$, counted with multiplicity. So for example if you obtained $\frac{p}{q} = \frac{3^4 \cdot 11}{ 2^5 \cdot 5}$ then the submitted answer should be $4 \cdot 3 + 11 = 23$.

2008 Philippine MO, 1

Prove that the set $\{1, 2, \cdots, 2007\}$ can be expressed as the union of disjoint subsets $A_i$ for $i=1,2,\cdots, 223$ such that each $A_i$ contains nine elements and the sum of all the elements in each $A_i$ is the same.

2016 PUMaC Individual Finals A, 1

There are $12$ candies on the table, four of which are rare candies. Chad has a friend who can tell rare candies apart from regular candies, but Chad can’t. Chad’s friend is allowed to take four candies from the table, but may not take any rare candies. Can his friend always take four candies in such a way that Chad will then be able to identify the four rare candies? If so, describe a strategy. If not, prove that it cannot be done. Note that Chad does not know anything about how the candies were selected (e.g. the order in which they were selected). However, Chad and his friend may communicate beforehand.

2022 IMAR Test, 4

Consider several tokens of various colors and sizes, so that there are no two tokens having the same color and the same size. Two numbers are written on each token $J$: one of them is the number of chips having the same color as $J$, but different size, and the other is the number of chips having the same size as $J$, but a different color. It is known that each of the numbers $0, 1, ..., 100$ is written at least once. For what numbers of tokens is this possible?

1999 Argentina National Olympiad, 3

In a trick tournament $2k$ people sign up. All possible matches are played with the condition that in each match, each of the four players knows his partner and does not know any of his two opponents. Determine the maximum number of matches that can be in such a tournament.

2014 Mediterranean Mathematics Olympiad, 2

Consider increasing integer sequences with elements from $1,\ldots,10^6$. Such a sequence is [i]Adriatic[/i] if its first element equals 1 and if every element is at least twice the preceding element. A sequence is [i]Tyrrhenian[/i] if its final element equals $10^6$ and if every element is strictly greater than the sum of all preceding elements. Decide whether the number of Adriatic sequences is smaller than, equal to, or greater than the number of Tyrrhenian sequences. (Proposed by Gerhard Woeginger, Austria)

2013 Thailand Mathematical Olympiad, 7

Let $P_1, ... , P_{2556}$ be distinct points in a regular hexagon $ABCDEF$ with unit side length. Suppose that no three points in the set $S = \{A, B, C, D, E, F, P_1, ... , P_{2556}\}$ are collinear. Show that there is a triangle whose vertices are in $S$ and whose area is less than $\frac{1}{1700}$ .

2021 Hong Kong TST, 3

On the table there are $20$ coins of weights $1,2,3,\ldots,15,37,38,39,40$ and $41$ grams. They all look alike but their colours are all distinct. Now Miss Adams knows the weight and colour of each coin, but Mr. Bean knows only the weights of the coins. There is also a balance on the table, and each comparison of weights of two groups of coins is called an operation. Miss Adams wants to tell Mr. Bean which coin is the $1$ gram coin by performing some operations. What is the minimum number of operations she needs to perform?

2010 Denmark MO - Mohr Contest, 3

Can $29$ boys and $31$ girls be lined up holding hands so no one is holding hands with two girls?

2022 China Team Selection Test, 5

Let $n$ be a positive integer, $x_1,x_2,\ldots,x_{2n}$ be non-negative real numbers with sum $4$. Prove that there exist integer $p$ and $q$, with $0 \le q \le n-1$, such that \[ \sum_{i=1}^q x_{p+2i-1} \le 1 \mbox{ and } \sum_{i=q+1}^{n-1} x_{p+2i} \le 1, \] where the indices are take modulo $2n$. [i]Note:[/i] If $q=0$, then $\sum_{i=1}^q x_{p+2i-1}=0$; if $q=n-1$, then $\sum_{i=q+1}^{n-1} x_{p+2i}=0$.

1985 Austrian-Polish Competition, 8

A convex $n$-gon $A_0A_1\dots A_{n-1}$ has been partitioned into $n-2$ triangles by certain diagonals not intersecting inside the $n$-gon. Prove that these triangles can be labeled $\triangle_1,\triangle_2,\dots,\triangle_{n-2}$ in such a way that $A_i$ is a vertex of $\triangle_i$, for $i=1,2,\dots,n-2$. Find the number of all such labellings.

2015 Bosnia And Herzegovina - Regional Olympiad, 4

On competition there were $67$ students. They were solving $6$ problems. Student who solves $k$th problem gets $k$ points, while student who solves incorrectly $k$th problem gets $-k$ points. $a)$ Prove that there exist two students with exactly the same answers to problems $b)$ Prove that there exist at least $4$ students with same number of points