Found problems: 567
1987 Romania Team Selection Test, 6
The plane is covered with network of regular congruent disjoint hexagons. Prove that there cannot exist a square which has its four vertices in the vertices of the hexagons.
[i]Gabriel Nagy[/i]
1982 Spain Mathematical Olympiad, 2
By composing a symmetry of axis $r$ with a right angle rotation around from a point $P$ that does not belong to the line, another movement $M$ results. Is $M$ an axis symmetry? Is there any line invariant through $M$?
2003 Costa Rica - Final Round, 5
Each of the squares of an $8 \times 8$ board can be colored white or black. Find the number of colorings of the board such that every $2 \times 2$ square contains exactly 2 black squares and 2 white squares.
1956 AMC 12/AHSME, 29
The points of intersection of $ xy \equal{} 12$ and $ x^2 \plus{} y^2 \equal{} 25$ are joined in succession. The resulting figure is:
$ \textbf{(A)}\ \text{a straight line} \qquad\textbf{(B)}\ \text{an equilateral triangle} \qquad\textbf{(C)}\ \text{a parallelogram}$
$ \textbf{(D)}\ \text{a rectangle} \qquad\textbf{(E)}\ \text{a square}$
2003 Polish MO Finals, 1
In an acute-angled triangle $ABC, CD$ is the altitude. A line through the midpoint $M$ of side $AB$ meets the rays $CA$ and $CB$ at $K$ and $L$ respectively such that $CK = CL.$ Point $S$ is the circumcenter of the triangle $CKL.$ Prove that $SD = SM.$
Denmark (Mohr) - geometry, 2009.1
In the figure, triangle $ADE$ is produced from triangle $ABC$ by a rotation by $90^o$ about the point $A$. If angle $D$ is $60^o$ and angle $E$ is $40^o$, how large is then angle $u$?
[img]https://1.bp.blogspot.com/-6Fq2WUcP-IA/Xzb9G7-H8jI/AAAAAAAAMWY/hfMEAQIsfTYVTdpd1Hfx15QPxHmfDLEkgCLcBGAsYHQ/s0/2009%2BMohr%2Bp1.png[/img]
2005 AIME Problems, 12
Square $ABCD$ has center $O$, $AB=900$, $E$ and $F$ are on $AB$ with $AE<BF$ and $E$ between $A$ and $F$, $m\angle EOF =45^\circ$, and $EF=400$. Given that $BF=p+q\sqrt{r}$, wherer $p,q,$ and $r$ are positive integers and $r$ is not divisible by the square of any prime, find $p+q+r$.
1986 IMO Shortlist, 16
Let $A,B$ be adjacent vertices of a regular $n$-gon ($n\ge5$) with center $O$. A triangle $XYZ$, which is congruent to and initially coincides with $OAB$, moves in the plane in such a way that $Y$ and $Z$ each trace out the whole boundary of the polygon, with $X$ remaining inside the polygon. Find the locus of $X$.
1991 IMTS, 4
Let $\triangle ABC$ be an arbitary triangle, and construct $P,Q,R$ so that each of the angles marked is $30^\circ$. Prove that $\triangle PQR$ is an equilateral triangle.
[asy]
size(200);
defaultpen(linewidth(0.7)+fontsize(10));
pair ext30(pair pt1, pair pt2) {
pair r1 = pt1+rotate(-30)*(pt2-pt1), r2 = pt2+rotate(30)*(pt1-pt2);
draw(anglemark(r1,pt1,pt2,25)); draw(anglemark(pt1,pt2,r2,25));
return intersectionpoints(pt1--r1, pt2--r2)[0];
}
pair A = (0,0), B=(10,0), C=(3,7), P=ext30(B,C), Q=ext30(C,A), R=ext30(A,B);
draw(A--B--C--A--R--B--P--C--Q--A); draw(P--Q--R--cycle, linetype("8 8"));
label("$A$", A, SW); label("$B$", B, SE); label("$C$", C, N); label("$P$", P, NE); label("$Q$", Q, NW); label("$R$", R, S);[/asy]
2011 Today's Calculation Of Integral, 759
Given a regular tetrahedron $PQRS$ with side length $d$. Find the volume of the solid generated by a rotation around the line passing through $P$ and the midpoint $M$ of $QR$.
2013 IPhOO, 8
[asy]size(8cm);
real w = 2.718; // width of block
real W = 13.37; // width of the floor
real h = 1.414; // height of block
real H = 7; // height of block + string
real t = 60; // measure of theta
pair apex = (w/2, H); // point where the strings meet
path block = (0,0)--(w,0)--(w,h)--(0,h)--cycle; // construct the block
draw(shift(-W/2,0)*block); // draws white block
path arrow = (w,h/2)--(w+W/8,h/2); // path of the arrow
draw(shift(-W/2,0)*arrow, EndArrow); // draw the arrow
picture pendulum; // making a pendulum...
draw(pendulum, block); // block
fill(pendulum, block, grey); // shades block
draw(pendulum, (w/2,h)--apex); // adds in string
add(pendulum); // adds in block + string
add(rotate(t, apex) * pendulum); // adds in rotated block + string
dot("$\theta$", apex, dir(-90+t/2)*3.14); // marks the apex and labels it with theta
draw((apex-(w,0))--(apex+(w,0))); // ceiling
draw((-W/2-w/2,0)--(w+W/2,0)); // floor[/asy]
A block of mass $m=\text{4.2 kg}$ slides through a frictionless table with speed $v$ and collides with a block of identical mass $m$, initially at rest, that hangs on a pendulum as shown above. The collision is perfectly elastic and the pendulum block swings up to an angle $\theta=12^\circ$, as labeled in the diagram. It takes a time $ t = \text {1.0 s} $ for the block to swing up to this peak. Find $10v$, in $\text{m/s}$ and round to the nearest integer. Do not approximate $ \theta \approx 0 $; however, assume $\theta$ is small enough as to use the small-angle approximation for the period of the pendulum.
[i](Ahaan Rungta, 6 points)[/i]
1996 Romania National Olympiad, 3
Let $P$ a convex regular polygon with $n$ sides, having the center $O$ and $\angle xOy$ an angle of measure $a$, $a \in (0,k)$. Let $S$ be the area of the common part of the interiors of the polygon and the angle. Find, as a function of $n$, the values of $a$ such that $S$ remains constant when $\angle xOy$ is rotating around $O$.
1986 IMO Longlists, 29
We define a binary operation $\star$ in the plane as follows: Given two points $A$ and $B$ in the plane, $C = A \star B$ is the third vertex of the equilateral triangle ABC oriented positively. What is the relative position of three points $I, M, O$ in the plane if $I \star (M \star O) = (O \star I)\star M$ holds?
1998 Putnam, 3
Let $H$ be the unit hemisphere $\{(x,y,z):x^2+y^2+z^2=1,z\geq 0\}$, $C$ the unit circle $\{(x,y,0):x^2+y^2=1\}$, and $P$ the regular pentagon inscribed in $C$. Determine the surface area of that portion of $H$ lying over the planar region inside $P$, and write your answer in the form $A \sin\alpha + B \cos\beta$, where $A,B,\alpha,\beta$ are real numbers.
2014 Singapore Senior Math Olympiad, 31
Find the number of ways that $7$ different guests can be seated at a round table with exactly 10 seats, without removing any empty seats. Here two seatings are considered to be the same if they can be obtained from each other by a rotation.
2011 AMC 12/AHSME, 12
A dart board is a regular octagon divided into regions as shown. Suppose that a dart thrown at the board is equally likely to land anywhere on the board. What is probability that the dart lands within the center square?
[asy]
unitsize(10mm);
defaultpen(linewidth(.8pt)+fontsize(10pt));
dotfactor=4;
pair A=(0,1), B=(1,0), C=(1+sqrt(2),0), D=(2+sqrt(2),1), E=(2+sqrt(2),1+sqrt(2)), F=(1+sqrt(2),2+sqrt(2)), G=(1,2+sqrt(2)), H=(0,1+sqrt(2));
draw(A--B--C--D--E--F--G--H--cycle);
draw(A--D);
draw(B--G);
draw(C--F);
draw(E--H);
[/asy]
$ \textbf{(A)}\ \frac{\sqrt{2} - 1}{2} \qquad\textbf{(B)}\ \frac{1}{4} \qquad\textbf{(C)}\ \frac{2 - \sqrt{2}}{2} \qquad\textbf{(D)}\ \frac{\sqrt{2}}{4} \qquad\textbf{(E)}\ 2 - \sqrt{2}$
2004 Putnam, B4
Let $n$ be a positive integer, $n \ge 2$, and put $\theta=\frac{2\pi}{n}$. Define points $P_k=(k,0)$ in the [i]xy[/i]-plane, for $k=1,2,\dots,n$. Let $R_k$ be the map that rotates the plane counterclockwise by the angle $\theta$ about the point $P_k$. Let $R$ denote the map obtained by applying in order, $R_1$, then $R_2$, ..., then $R_n$. For an arbitrary point $(x,y)$, find and simplify the coordinates of $R(x,y)$.
2006 Pre-Preparation Course Examination, 4
Show that $ \rho (f)$ changes continously over $ f$. It means for every bijection $ f: S^1\rightarrow S^1$ and $ \epsilon > 0$ there is $ \delta > 0$ such that if $ g: S^1\rightarrow S^1$ is a bijection such that $ \parallel{}f \minus{} g\parallel{} < \delta$ then $ |\rho(f) \minus{} \rho(g)| < \epsilon$.
Note that $ \rho(f)$ is the rotatation number of $ f$ and $ \parallel{}f \minus{} g\parallel{} \equal{} \sup\{|f(x) \minus{} g(x)| | x\in S^1\}$.
2011 AMC 10, 22
Each vertex of convex pentagon $ABCDE$ is to be assigned a color. There are $6$ colors to choose from, and the ends of each diagonal must have different colors. How many different colorings are possible?
$ \textbf{(A)}\ 2520\qquad\textbf{(B)}\ 2880\qquad\textbf{(C)}\ 3120\qquad\textbf{(D)}\ 3250\qquad\textbf{(E)}\ 3750 $
2010 Contests, 2
A series of figures is shown in the picture below, each one of them created by following a secret rule. If the leftmost figure is considered the first figure, how many squares will the 21st figure have?
[img]http://www.artofproblemsolving.com/Forum/download/file.php?id=49934[/img]
Note: only the little squares are to be counted (i.e., the $2 \times 2$ squares, $3 \times 3$ squares, $\dots$ should not be counted)
Extra (not part of the original problem): How many squares will the 21st figure have, if we consider all $1 \times 1$ squares, all $2 \times 2$ squares, all $3 \times 3$ squares, and so on?.
2011 USAMO, 2
An integer is assigned to each vertex of a regular pentagon so that the sum of the five integers is 2011. A turn of a solitaire game consists of subtracting an integer $m$ from each of the integers at two neighboring vertices and adding $2m$ to the opposite vertex, which is not adjacent to either of the first two vertices. (The amount $m$ and the vertices chosen can vary from turn to turn.) The game is won at a certain vertex if, after some number of turns, that vertex has the number 2011 and the other four vertices have the number 0. Prove that for any choice of the initial integers, there is exactly one vertex at which the game can be won.
2012 NIMO Problems, 8
A convex 2012-gon $A_1A_2A_3 \dots A_{2012}$ has the property that for every integer $1 \le i \le 1006$, $\overline{A_iA_{i+1006}}$ partitions the polygon into two congruent regions. Show that for every pair of integers $1 \le j < k \le 1006$, quadrilateral $A_jA_kA_{j+1006}A_{k+1006}$ is a parallelogram.
[i]Proposed by Lewis Chen[/i]
2009 Princeton University Math Competition, 8
Taotao wants to buy a bracelet. The bracelets have 7 different beads on them, arranged in a circle. Two bracelets are the same if one can be rotated or flipped to get the other. If she can choose the colors and placement of the beads, and the beads come in orange, white, and black, how many possible bracelets can she buy?
2020 AMC 12/AHSME, 12
Line $\ell$ in the coordinate plane has the equation $3x - 5y + 40 = 0$. This line is rotated $45^{\circ}$ counterclockwise about the point $(20, 20)$ to obtain line $k$. What is the $x$-coordinate of the $x$-intercept of line $k?$
$\textbf{(A) } 10 \qquad \textbf{(B) } 15 \qquad \textbf{(C) } 20 \qquad \textbf{(D) } 25 \qquad \textbf{(E) } 30$
1975 Canada National Olympiad, 6
(i) 15 chairs are equally placed around a circular table on which are name cards for 15 guests. The guests fail to notice these cards until after they have sat down, and it turns out that no one is sitting in the correct seat. Prove that the table can be rotated so that at least two of the guests are simultaneously correctly seated.
(ii) Give an example of an arrangement in which just one of the 15 guests is correctly seated and for which no rotation correctly places more than one person.