Found problems: 14842
2022 Belarusian National Olympiad, 8.4
Given a board $3 \times 2021$, all cells of which are white. Two players in turns colour two white cells, which are either in the same row or column, in black. A player, which can not make a move, loses.
Which of the player can guarantee his win regardless of the moves of his opponent?
2011 China Western Mathematical Olympiad, 2
Let $M$ be a subset of $\{1,2,3... 2011\}$ satisfying the following condition:
For any three elements in $M$, there exist two of them $a$ and $b$ such that $a|b$ or $b|a$.
Determine the maximum value of $|M|$ where $|M|$ denotes the number of elements in $M$
2022 Cyprus TST, 4
Let $m, n$ be positive integers with $m<n$ and consider an $n\times n$ board from which its upper left $ m\times m$ part has been removed. An example of such board for $n=5$ and $m=2$ is shown below.
Determine for which pairs $(m, n)$ this board can be tiled with $3\times 1$ tiles. Each tile can be positioned either horizontally or vertically so that it covers exactly three squares of the board. The tiles should not overlap and should not cover squares outside of the board.
2010 Czech-Polish-Slovak Match, 1
Given any collection of $2010$ nondegenerate triangles, their sides are painted so that each triangle has one red side, one blue side, and one white side. For each color, arrange the side lengths in order: [list][*]let $b_1\le b_2\le\cdots\le b_{2011}$ denote the lengths of the blue sides;
[*]let $r_1\le r_2\le\cdots\le r_{2011}$ denote the lengths of the red sides; and
[*]let $w_1\le w_2\le\cdots\le w_{2011}$ denote the lengths of the white sides.[/list] Find the largest integer $k$ for which there necessarily exists at least $k$ indices $j$ such that $b_j$, $r_j$, $w_j$ are the side lengths of a nondegenerate triangle.
2009 BAMO, 1
A square grid of $16$ dots (see the figure) contains the corners of nine $1\times1$ squares, four $2\times 2$ squares, and one $3\times3$ square, for a total of $14$ squares whose sides are parallel to the sides of the grid. What is the smallest possible number of dots you can remove so that, after removing those dots, each of the $14$ squares is missing at least one corner?
Justify your answer by showing both that the number of dots you claim is sufficient and by explaining why no smaller number of dots will work.
[img]https://cdn.artofproblemsolving.com/attachments/0/9/bf091a769dbec40eceb655f5588f843d4941d6.png[/img]
1986 IMO Longlists, 43
Three persons $A,B,C$, are playing the following game:
A $k$-element subset of the set $\{1, . . . , 1986\}$ is randomly chosen, with an equal probability of each choice, where $k$ is a fixed positive integer less than or equal to $1986$. The winner is $A,B$ or $C$, respectively, if the sum of the chosen numbers leaves a remainder of $0, 1$, or $2$ when divided by $3$.
For what values of $k$ is this game a fair one? (A game is fair if the three outcomes are equally probable.)
2011 ELMO Shortlist, 1
Let $S$ be a finite set, and let $F$ be a family of subsets of $S$ such that
a) If $A\subseteq S$, then $A\in F$ if and only if $S\setminus A\notin F$;
b) If $A\subseteq B\subseteq S$ and $B\in F$, then $A\in F$.
Determine if there must exist a function $f:S\to\mathbb{R}$ such that for every $A\subseteq S$, $A\in F$ if and only if
\[\sum_{s\in A}f(s)<\sum_{s\in S\setminus A}f(s).\]
[i]Evan O'Dorney.[/i]
2013 German National Olympiad, 5
Five people form several commissions to prepare a competition. Here any commission must be nonempty and any two commissions cannot contain the same members. Moreover, any two commissions have at least one common member.
There are already $14$ commissions. Prove that at least one additional commission can be formed.
2023 China National Olympiad, 4
Find the minimum positive integer $n\ge 3$, such that there exist $n$ points $A_1,A_2,\cdots, A_n$ satisfying no three points are collinear and for any $1\le i\le n$, there exist $1\le j \le n (j\neq i)$, segment $A_jA_{j+1}$ pass through the midpoint of segment $A_iA_{i+1}$, where $A_{n+1}=A_1$
2014 Greece Team Selection Test, 4
Square $ABCD$ is divided into $n^2$ equal small squares by lines parallel to its sides.A spider starts from $A$ and moving only rightward or upwards,tries to reach $C$.Every "movement" of the spider consists of $k$ steps rightward and $m$ steps upwards or $m$ steps rightward and $k$ steps upwards(it can follow any possible order for the steps of each "movement").The spider completes $l$ "movements" and afterwards it moves without limitation (it still moves rightwards and upwards only).If $n=m\cdot l$,find the number of the possible paths the spider can follow to reach $C$.Note that $n,m,k,l\in \mathbb{N^{*}}$ with $k<m$.
MBMT Guts Rounds, 2018
[hide=C stands for Cantor, G stands for Gauss]they had two problem sets under those two names[/hide]
[u] Set 4[/u]
[b]C.16 / G.6[/b] Let $a, b$, and $c$ be real numbers. If $a^3 + b^3 + c^3 = 64$ and $a + b = 0$, what is the value of $c$?
[b]C.17 / G.8[/b] Bender always turns $60$ degrees clockwise. He walks $3$ meters, turns, walks $2$ meters, turns, walks $1$ meter, turns, walks $4$ meters, turns, walks $1$ meter, and turns. How many meters does Bender have to walk to get back to his original position?
[b]C.18 / G.13[/b] Guang has $4$ identical packs of gummies, and each pack has a red, a blue, and a green gummy. He eats all the gummies so that he finishes one pack before going on to the next pack, but he never eats two gummies of the same color in a row. How many different ways can Guang eat the gummies?
[b]C.19[/b] Find the sum of all digits $q$ such that there exists a perfect square that ends in $q$.
[b]C.20 / G.14[/b] The numbers $5$ and $7$ are written on a whiteboard. Every minute Stev replaces the two numbers on the board with their sum and difference. After $2017$ minutes the product of the numbers on the board is $m$. Find the number of factors of $m$.
[u]Set 5[/u]
[b]C.21 / G.10[/b] On the planet Alletas, $\frac{32}{33}$ of the people with silver hair have purple eyes and $\frac{8}{11}$ of the people with purple eyes have silver hair. On Alletas, what is the ratio of the number of people with purple eyes to the number of people with silver hair?
[b]C.22 / G.15[/b] Let $P$ be a point on $y = -1$. Let the clockwise rotation of $P$ by $60^o$ about $(0, 0)$ be $P'$. Find the minimum possible distance between $P'$ and $(0, -1)$.
[b]C.23 / G.18[/b] How many triangles can be made from the vertices and center of a regular hexagon? Two congruent triangles with different orientations are considered distinct.
[b]C.24[/b] Jeremy and Kevin are arguing about how cool a sweater is on a scale of $1-5$. Jeremy says “$3$”, and Kevin says “$4$”. Jeremy angrily responds “$3.5$”, to which Kevin replies “$3.75$”. The two keep going at it, responding with the average of the previous two ratings. What rating will they converge to (and settle on as the coolness of the sweater)?
[b]C.25 / G.20[/b] An even positive integer $n$ has an [i]odd factorization[/i] if the largest odd divisor of $n$ is also the smallest odd divisor of $n$ greater than $1$. Compute the number of even integers $n$ less than $50$ with an odd factorization.
[u]Set 6[/u]
[b]C.26 / G.26[/b] When $2018! = 2018 \times 2017 \times ... \times 1$ is multiplied out and written as an integer, find the number of $4$’s.
If the correct answer is $A$ and your answer is $E$, you will receive $12 \min\, \, (A/E, E/A)^3$points.
[b]C.27 / G.27[/b] A circle of radius $10$ is cut into three pieces of equal area with two parallel cuts. Find the width of the center piece.
[img]https://cdn.artofproblemsolving.com/attachments/e/2/e0ab4a2d51052ee364dd14336677b053a40352.png[/img]
If the correct answer is $A$ and your answer is $E$, you will receive $\max \, \,(0, 12 - 6|A - E|)$points.
[b]C.28 / G.28[/b] An equilateral triangle of side length $1$ is randomly thrown onto an infinite set of lines, spaced $1$ apart. On average, how many times will the boundary of the triangle intersect one of the lines?
[img]https://cdn.artofproblemsolving.com/attachments/0/1/773c3d3e0dfc1df54945824e822feaa9c07eb7.png[/img]
For example, in the above diagram, the boundary of the triangle intersects the lines in $2$ places.
If the correct answer is $A$ and your answer is $E$, you will receive $\max\, \,(0, 12-120|A-E|/A)$ points.
[b]C.29 / G.29[/b] Call an ordered triple of integers $(a, b, c)$ nice if there exists an integer $x$ such that $ax^2 + bx + c = 0$. How many nice triples are there such that $-100 \le a, b, c \le 100$?
If the correct answer is $A$ and your answer is $E$, you will receive $12 \min\, \,(A/E, E/A)$ points.
[b]C.30 / G.30[/b] Let $f(i)$ denote the number of MBMT volunteers to be born in the $i$th state to join the United States. Find the value of $1f(1) + 2f(2) + 3f(3) + ... + 50f(50)$.
Note 1: Maryland was the $7$th state to join the US.
Note 2: Last year’s MBMT competition had $42$ volunteers.
If the correct answer is $A$ and your answer is $E$, you will receive $\max\, \,(0, 12 - 500(|A -E|/A)^2)$ points.
PS. You should use hide for answers. C1-15/ G1-10 have been posted [url=https://artofproblemsolving.com/community/c3h2790674p24540132]here [/url] and G16-25 [url=https://artofproblemsolving.com/community/c3h2790679p24540159]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2012 Irish Math Olympiad, 5
Let $n$ be a positive integer. A mouse sits at each corner point of an $n\times n$ board, which is divided into unit squares as shown below for the example $n=5$.
[asy]
unitsize(5mm);
defaultpen(linewidth(.5pt));
fontsize(25pt);
for(int i=0; i<=5; ++i)
{
for(int j=0; j<=5; ++j)
{
draw((0,i)--(5,i));
draw((j,0)--(j,5));
}}
dot((0,0));
dot((5,0));
dot((0,5));
dot((5,5));
[/asy]
The mice then move according to a sequence of [i]steps[/i], in the following manner:
(a) In each step, each of the four mice travels a distance of one unit in a horizontal or vertical direction. Each unit distance is called an [i]edge[/i] of the board, and we say that each mouse [i]uses[/i] an edge of the board.
(b) An edge of the board may not be used twice in the same direction.
(c) At most two mice may occupy the same point on the board at any time.
The mice wish to collectively organize their movements so that each edge of the board will be used twice (not necessarily be the same mouse), and each mouse will finish up at its starting point. Determine, with proof, the values of $n$ for which the mice may achieve this goal.
2008 IMO Shortlist, 2
Let $n \in \mathbb N$ and $A_n$ set of all permutations $(a_1, \ldots, a_n)$ of the set $\{1, 2, \ldots , n\}$ for which
\[k|2(a_1 + \cdots+ a_k), \text{ for all } 1 \leq k \leq n.\]
Find the number of elements of the set $A_n$.
[i]Proposed by Vidan Govedarica, Serbia[/i]
1993 All-Russian Olympiad, 3
In a tennis tournament, $n$ players want to make $2$ vs $2$ matches such that each player has each of the other players as opponents exactly once. Find all possible values of $n$.
2020 Colombia National Olympiad, 6
Let $k$ be a positive integer and $n_1, n_2, ..., n_k$ be non-negative integers. Points $P_1, P_2, ..., P_k$ lie on a circle in such a way that at point $P_i$ there are $n_i$ stones. Leandro wishes to change the position of some of these stones in order to accomplish his objective which is to have the same number of stones at each point of the circle. He does this by repeating as many times as necessary the following operation: if there exists a point on the circle with at least $k - 1$ stones, he can choose $k -1$ of these and distribute them by giving one to each of the remaining $k - 1$ points. For which values $n_1, n_2, ..., n_k$ can Leandro accomplish his objective?
In the figure below there is a configuration of stones for $k = 4$. On the right is the initial division of stones, while on the left there is the configuration obtained from the initial one by choosing $k - 1 = 3$ stones from the top point on the circle and distributing one each to the other points.
[figures missing]
2015 Korea National Olympiad, 4
For positive integers $n, k, l$, we define the number of $l$-tuples of positive integers $(a_1,a_2,\cdots a_l)$ satisfying the following as $Q(n,k,l)$.
(i): $n=a_1+a_2+\cdots +a_l$
(ii): $a_1>a_2>\cdots > a_l > 0$.
(iii): $a_l$ is an odd number.
(iv): There are $k$ odd numbers out of $a_i$.
For example, from $9=8+1=6+3=6+2+1$, we have $Q(9,1,1)=1$, $Q(9,1,2)=2$, $Q(9,1,3)=1$.
Prove that if $n>k^2$, $\sum_{l=1}^n Q(n,k,l)$ is $0$ or an even number.
1983 Federal Competition For Advanced Students, P2, 6
Planes $ \pi _1$ and $ \pi _2$ in Euclidean space $ \mathbb{R} ^3$ partition $ S\equal{}\mathbb{R} ^3 \setminus (\pi _1 \cup \pi _2)$ into several components. Show that for any cube in $ \mathbb{R} ^3$, at least one of the components of $ S$ meets at least three faces of the cube.
2009 Saint Petersburg Mathematical Olympiad, 5
Call a set of some cells in infinite chess field as board. Set of rooks on the board call as awesome if no one rook can beat another, but every empty cell is under rook attack. There are awesome set with $2008$ rooks and with $2010$ rooks. Prove, that there are awesome set with $2009$ rooks.
2009 Korea National Olympiad, 4
There are $n ( \ge 3) $ students in a class. Some students are friends each other, and friendship is always mutual. There are $ s ( \ge 1 ) $ couples of two students who are friends, and $ t ( \ge 1 ) $ triples of three students who are each friends. For two students $ x, y $ define $ d(x,y)$ be the number of students who are both friends with $ x $ and $ y $. Prove that there exist three students $ u, v, w $ who are each friends and satisfying
\[ d(u,v) + d(v,w) + d(w,u) \ge \frac{9t}{s} . \]
2010 Germany Team Selection Test, 1
For any integer $n\geq 2$, let $N(n)$ be the maxima number of triples $(a_i, b_i, c_i)$, $i=1, \ldots, N(n)$, consisting of nonnegative integers $a_i$, $b_i$ and $c_i$ such that the following two conditions are satisfied:
[list][*] $a_i+b_i+c_i=n$ for all $i=1, \ldots, N(n)$,
[*] If $i\neq j$ then $a_i\neq a_j$, $b_i\neq b_j$ and $c_i\neq c_j$[/list]
Determine $N(n)$ for all $n\geq 2$.
[i]Proposed by Dan Schwarz, Romania[/i]
2021 Iran RMM TST, 2
In a chess board we call a group of queens [i]independant[/i] if no two are threatening each other. In an $n$ by $n$ grid, we put exaxctly one queen in each cell ofa greed. Let us denote by $M_n$ the minimum number of independant groups that hteir union contains all the queens. Let $k$ be a positive integer, prove that $M_{3k+1} \le 3k+2$
Proposed by [i]Alireza Haghi[/i]
2005 Slovenia National Olympiad, Problem 4
William was bored at the math lesson, so he drew a circle and $n\ge3$ empty cells around the circumference. In every cell he wrote a positive number. Later on he erased the numbers and in every cell wrote the geometric mean of the numbers previously written in the two neighboring cells. Show that there exists a cell whose number was not replaced by a larger number.
2018 Polish MO Finals, 6
A prime $p>3$ is given. Let $K$ be the number of such permutations $(a_1, a_2, \ldots, a_p)$ of $\{ 1, 2, \ldots, p\}$ such that
$$a_1a_2+a_2a_3+\ldots + a_{p-1}a_p+a_pa_1$$
is divisible by $p$. Prove $K+p$ is divisible by $p^2$.
MOAA Gunga Bowls, 2022
[u]Set 7[/u]
[b]G19.[/b] How many ordered triples $(x, y, z)$ with $1 \le x, y, z \le 50$ are there such that both $x + y + z$ and $xy + yz + zx$ are divisible by$ 6$?
[b]G20.[/b] Triangle $ABC$ has orthocenter $H$ and circumcenter $O$. If $D$ is the foot of the perpendicular from $A$ to $BC$, then $AH = 8$ and $HD = 3$. If $\angle AOH = 90^o$, find $BC^2$.
[b]G21.[/b] Nate flips a fair coin until he gets two heads in a row, immediately followed by a tails. The probability that he flips the coin exactly $12$ times is $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
[u]Set 8[/u]
[b]G22.[/b] Let $f$ be a function defined by $f(1) = 1$ and $$f(n) = \frac{1}{p}f\left(\frac{n}{p}\right)f(p) + 2p - 2,$$ where $p$ is the least prime dividing $n$, for all integers $n \ge 2$. Find $f(2022)$.
[b]G23.[/b] Jessica has $15$ balls numbered $1$ through $15$. With her left hand, she scoops up $2$ of the balls. With her right hand, she scoops up $2$ of the remaining balls. The probability that the sum of the balls in her left hand is equal to the sum of the balls in her right hand can be expressed as $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
[b]G24.[/b] Let $ABCD$ be a cyclic quadrilateral such that its diagonal $BD = 17$ is the diameter of its circumcircle. Given $AB = 8$, $BC = CD$, and that a line $\ell$ through A intersects the incircle of $ABD$ at two points $P$ and $Q$, the maximum area of $CP Q$ can be expressed as a fraction $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Find $m + n$.
[u]Set 9[/u]
[i]This set consists of three estimation problems, with scoring schemes described.[/i]
[b]G25.[/b] Estimate $N$, the total number of participants (in person and online) at MOAA this year. An estimate of $e$ gets a total of max $ \left( 0, \lfloor 150 \left( 1- \frac{|N-e|}{N}\right) \rfloor -120 \right)$ points.
[b]G26.[/b] If $A$ is the the total number of in person participants at MOAA this year, and $B$ is the total number of online participants at MOAA this year, estimate $N$, the product $AB$. An estimate of $e$ gets a total of max $(0, 30 - \lceil \log10(8|N - e| + 1)\rceil )$ points.
[b]G27.[/b] Estimate $N$, the total number of letters in all the teams that signed up for MOAA this year, both in person and online. An estimate of e gets a total of max $(0, 30 - \lceil 7 log5(|N - E|)\rceil )$ points.
PS. You should use hide for answers. Sets 1-3 have been posted [url=https://artofproblemsolving.com/community/c3h3131303p28367061]here [/url] and 4-6 [url=https://artofproblemsolving.com/community/c3h3131305p28367080]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2019 SIMO, Q2
Fix a convex $n > 3$ gon $A_{1}A_{2}...A_{n} $ and connect every two points with a road. Call this $n$-gon [i]crossy[/i] if no three roads intersect at a point inside the polygon. This $n$-gon is partitioned into a set $S$ of disjoint polygons formed by the roads. Label every intersection with an integer such that $A_{1}$ is non-zero. Call the labelling [i]basic[/i] if for every polygon in $S$, the sum of the labels of its vertices is $0$.
$(a)$ Prove that there is a [i]basic[/i] labelling of a crossy $n$-gon when $n$ is even.
$(b)$ Prove that there is no [i]basic[/i] labelling of a crossy $n$-gon when $n$ is odd.