Found problems: 14842
2024 Taiwan TST Round 2, C
Let $k$ be a positive integer. The little one and the magician on the skywalk play a game. Initially, there are $N = 2^k$ distinct balls line up in a row, with each of the ball covered by a cup. On each turn, the little one chooses two cups, then the magician can either swap the balls in the two cups, or do a fake move so that the balls in the two cups stay the same. The little one cannot distinguish whether the magician fakes a move on not, nor can she observe the balls inside the cups. After $M = k \times 2^{k-1}$ turns, the magician opens all cups so the little one can check the ball in each of the cups. If the little one can identify whether the magician fakes a move or not for each of the $M$ turns, then the little one win. Prove that the little one has a winning strategy.
[i]
Proposed by usjl[/i]
1961 All-Soviet Union Olympiad, 4
We are given a $4\times 4$ table.
a) Place $7$ stars in the cells in such a way that the erasing of any two rows and two columns will leave at least one of the stars.
b) Prove that if there are less than $7$ stars, you can always find two columns and two rows such that erasing them, no star remains in the table.
2022 Canadian Junior Mathematical Olympiad, 2
You have an infinite stack of T-shaped tetrominoes (composed of four squares of side length 1), and an n × n board. You are allowed to place some tetrominoes on the board, possibly rotated, as long as no two tetrominoes overlap and no tetrominoes extend off the board. For which values of n can you cover the entire board?
2019 Istmo Centroamericano MO, 2
The numbers $3$, $4$ ,$...$, $2019$ are written on a blackboard. David and Edgardo play alternately, starting with David. On their turn, each player must erase a number from the board and write two positive integers whose sum is
equal to the number just deleted. The winner is the one who makes all the numbers on the board equal. Determine who has a winning strategy and describe it.
2018 CMIMC Combinatorics, 2
Compute the number of ways to rearrange nine white cubes and eighteen black cubes into a $3\times 3\times 3$ cube such that each $1\times1\times3$ row or column contains exactly one white cube. Note that rotations are considered $\textit{distinct}$.
2008 Junior Balkan Team Selection Tests - Romania, 5
Let $ n$ be an integer, $ n\geq 2$, and the integers $ a_1,a_2,\ldots,a_n$, such that $ 0 < a_k\leq k$, for all $ k \equal{} 1,2,\ldots,n$. Knowing that the number $ a_1 \plus{} a_2 \plus{} \cdots \plus{} a_n$ is even, prove that there exists a choosing of the signs $ \plus{}$, respectively $ \minus{}$, such that
\[ a_1 \pm a_2 \pm \cdots \pm a_n\equal{} 0.
\]
2020 Argentina National Olympiad Level 2, 4
Juli has a deck of $54$ cards and proposes the following game to Bruno. Juli places the cards in a row, some face-up and others face-down. Bruno can repeatedly perform the following move: select a card and flip it along with its two neighbors (turning face-up cards face-down, and vice versa for face-down cards). Bruno wins if, through this process, he manages to turn all the cards face up. Otherwise, Juli wins. Determine which player has a winning strategy and explain it.
[b]Note:[/b] When Bruno selects the first or the last card in the row, he flips only two cards. In all other cases, he flips three cards.
2004 China Team Selection Test, 2
Let $ k$ be a positive integer. Set $ A \subseteq \mathbb{Z}$ is called a $ \textbf{k \minus{} set}$ if there exists $ x_1, x_2, \cdots, x_k \in \mathbb{Z}$ such that for any $ i \neq j$, $ (x_i \plus{} A) \cap (x_j \plus{} A) \equal{} \emptyset$, where $ x \plus{} A \equal{} \{ x \plus{} a \mid a \in A \}$. Prove that if $ A_i$ is $ \textbf{k}_i\textbf{ \minus{} set}$($ i \equal{} 1,2, \cdots, t$), and $ A_1 \cup A_2 \cup \cdots \cup A_t \equal{} \mathbb{Z}$, then $ \displaystyle \frac {1}{k_1} \plus{} \frac {1}{k_2} \plus{} \cdots \plus{} \frac {1}{k_t} \geq 1$.
2011 HMNT, 4
Toward the end of a game of Fish, the $2$ through $7$ of spades, inclusive, remain in the hands of three distinguishable players: DBR, RB, and DB, such that each player has at least one card. If it is known that DBR either has more than one card or has an even-numbered spade, or both, in how many ways can the players’ hands be distributed?
2006 Thailand Mathematical Olympiad, 17
Six people, with distinct weights, want to form a triangular position where there are three people in the bottom row, two in the middle row, and one in the top row, and each person in the top two rows must weigh less than both of their supports. How many distinct formations are there?
2017 HMNT, 6
[b]R[/b]thea, a distant planet, is home to creatures whose DNA consists of two (distinguishable) strands of bases with a fixed orientation. Each base is one of the letters H, M, N, T, and each strand consists of a sequence of five bases, thus forming five pairs. Due to the chemical properties of the bases, each pair must consist of distinct bases. Also, the bases H and M cannot appear next to each other on the same strand; the same is true for N and T. How many possible DNA sequences are there on Rthea?
2015 Germany Team Selection Test, 3
Construct a tetromino by attaching two $2 \times 1$ dominoes along their longer sides such that the midpoint of the longer side of one domino is a corner of the other domino. This construction yields two kinds of tetrominoes with opposite orientations. Let us call them $S$- and $Z$-tetrominoes, respectively.
Assume that a lattice polygon $P$ can be tiled with $S$-tetrominoes. Prove that no matter how we tile $P$ using only $S$- and $Z$-tetrominoes, we always use an even number of $Z$-tetrominoes.
[i]Proposed by Tamas Fleiner and Peter Pal Pach, Hungary[/i]
2018 PUMaC Combinatorics B, 1
You have four fair $6$-sided dice, each numbered $1$ to $6$ (inclusive). If all four dice are rolled, the probability that the product of the rolled numbers is prime can be written as $\tfrac{a}{b}$, where $a$ and $b$ are relatively prime. What is $a+b$?
2010 Flanders Math Olympiad, 4
In snack bar Pita Goras, the owner checks his accounts. He writes on every line either a positive amount in case of an income or a negative amount in case of an expense. He says to his accountant, “If I change the amounts of random $5$ adding consecutive lines, I always get a strictly positive result.” "Indeed," the accountant answers him, “but if you put the sums of $7$ consecutive lines add up, you always get a strictly negative result.” How many lines are there maximum
on his sheet?
1994 Baltic Way, 19
The Wonder Island Intelligence Service has $16$ spies in Tartu. Each of them watches on some of his colleagues. It is known that if spy $A$ watches on spy $B$, then $B$ does not watch on $A$. Moreover, any $10$ spies can numbered in such a way that the first spy watches on the second, the second watches on the third and so on until the tenth watches on the first. Prove that any $11$ spies can also be numbered is a similar manner.
ICMC 4, 1
Let \(S\) be a set with 10 distinct elements. A set \(T\) of subsets of \(S\) (possibly containing the empty set) is called [i]union-closed[/i] if, for all \(A, B \in T\), it is true that \(A \cup B \in T\). Show that the number of union-closed sets \(T\) is less than \(2^{1023}\).
[i]Proposed by Tony Wang[/i]
2017 Olympic Revenge, 3
Let $n$ a positive integer. We call a pair $(\pi ,C)$ composed by a permutation $\pi$$:$ {$1,2,...n$}$\rightarrow${$1,2,...,n$} and a binary function $C:$ {$1,2,...,n$}$\rightarrow${$0,1$} "revengeful" if it satisfies the two following conditions:
$1)$For every $i$ $\in$ {$1,2,...,n$}, there exist $j$ $\in$ $S_{i}=${$i, \pi(i),\pi(\pi(i)),...$} such that $C(j)=1$.
$2)$ If $C(k)=1$, then $k$ is one of the $v_{2}(|S_{k}|)+1$ highest elements of $S_{k}$, where $v_{2}(t)$ is the highest nonnegative integer such that $2^{v_{2}(t)}$ divides $t$, for every positive integer $t$.
Let $V$ the number of revengeful pairs and $P$ the number of partitions of $n$ with all parts powers of $2$.
Determine $\frac{V}{P}$.
2019 Pan-African, 5
A square is divided into $N^2$ equal smaller non-overlapping squares, where $N \geq 3$. We are given a broken line which passes through the centres of all the smaller squares (such a broken line may intersect itself).
[list]
[*] Show that it is possible to find a broken line composed of $4$ segments for $N = 3$.
[*] Find the minimum number of segments in this broken line for arbitrary $N$.
[/list]
2021 Estonia Team Selection Test, 1
a) There are $2n$ rays marked in a plane, with $n$ being a natural number. Given that no two marked rays have the same direction and no two marked rays have a common initial point, prove that there exists a line that passes through none of the initial points of the marked rays and intersects with exactly $n$ marked rays.
(b) Would the claim still hold if the assumption that no two marked rays have a common initial point was dropped?
2014 Saudi Arabia Pre-TST, 1.4
Majid wants to color the cells of an $n\times n$ chessboard into white and black so that each $2\times 2$ subsquare contains two white cells and two black cells. In how many ways can Majid color this $n\times n$ chessboard?
2022 Junior Balkan Team Selection Tests - Romania, P3
Find how many positive integers $k\in\{1,2,\ldots,2022\}$ have the following property: if $2022$ real numbers are written on a circle so that the sum of any $k$ consecutive numbers is equal to $2022$ then all of the $2022$ numbers are equal.
2020 Peru EGMO TST, 6
A table $110\times 110$ is given, we define the distance between two cells $A$ and $B$ as the least quantity of moves to move a chess king from the cell $A$ to cell $B$. We marked $n$ cells on the table $110\times 110$ such that the distance between any two cells is not equal to $15$. Determine the greatest value of $n$.
2012 Princeton University Math Competition, A3 / B5
Jim has two fair $6$-sided dice, one whose faces are labelled from $1$ to $6$, and the second whose faces are labelled from $3$ to $8$. Twice, he randomly picks one of the dice (each die equally likely) and rolls it. Given the sum of the resulting two rolls is $9$, if $\frac{m}{n}$ is the probability he rolled the same die twice where $m, n$ are relatively prime positive integers, then what is $m + n$?
2008 Junior Balkan MO, 4
A $ 4\times 4$ table is divided into $ 16$ white unit square cells. Two cells are called neighbors if they share a common side. A [i]move[/i] consists in choosing a cell and the colors of neighbors from white to black or from black to white. After exactly $ n$ moves all the $ 16$ cells were black. Find all possible values of $ n$.
2003 Switzerland Team Selection Test, 9
Given integers $0 < a_1 < a_2 <... < a_{101} < 5050$, prove that one can always choose for different numbers $a_k,a_l,a_m,a_n$ such that $5050 | a_k +a_l -a_m -a_n$