Found problems: 560
1990 Greece National Olympiad, 2
Let $ACBD$ be a asquare and $K,L,M,N$ be points of $AB,BC,CD,DA$ respectively. If $O$ is the center of the square , prove that the expression $$ \overrightarrow{OK}\cdot \overrightarrow{OL}+\overrightarrow{OL}\cdot\overrightarrow{OM}+\overrightarrow{OM}\cdot\overrightarrow{ON}+\overrightarrow{ON}\cdot\overrightarrow{OK}$$
is independent of positions of $K,L,M,N$, (i.e. is constant )
2008 AIME Problems, 13
Let
\[ p(x,y) \equal{} a_0 \plus{} a_1x \plus{} a_2y \plus{} a_3x^2 \plus{} a_4xy \plus{} a_5y^2 \plus{} a_6x^3 \plus{} a_7x^2y \plus{} a_8xy^2 \plus{} a_9y^3.
\]Suppose that
\begin{align*}p(0,0) &\equal{} p(1,0) \equal{} p( \minus{} 1,0) \equal{} p(0,1) \equal{} p(0, \minus{} 1) \\&\equal{} p(1,1) \equal{} p(1, \minus{} 1) \equal{} p(2,2) \equal{} 0.\end{align*}
There is a point $ \left(\tfrac {a}{c},\tfrac {b}{c}\right)$ for which $ p\left(\tfrac {a}{c},\tfrac {b}{c}\right) \equal{} 0$ for all such polynomials, where $ a$, $ b$, and $ c$ are positive integers, $ a$ and $ c$ are relatively prime, and $ c > 1$. Find $ a \plus{} b \plus{} c$.
2009 Putnam, A6
Let $ f: [0,1]^2\to\mathbb{R}$ be a continuous function on the closed unit square such that $ \frac{\partial f}{\partial x}$ and $ \frac{\partial f}{\partial y}$ exist and are continuous on the interior of $ (0,1)^2.$ Let $ a\equal{}\int_0^1f(0,y)\,dy,\ b\equal{}\int_0^1f(1,y)\,dy,\ c\equal{}\int_0^1f(x,0)\,dx$ and $ d\equal{}\int_0^1f(x,1)\,dx.$ Prove or disprove: There must be a point $ (x_0,y_0)$ in $ (0,1)^2$ such that
$ \frac{\partial f}{\partial x}(x_0,y_0)\equal{}b\minus{}a$ and $ \frac{\partial f}{\partial y}(x_0,y_0)\equal{}d\minus{}c.$
1966 IMO Longlists, 22
Let $P$ and $P^{\prime }$ be two parallelograms with equal area, and let their sidelengths be $a,$ $b$ and $a^{\prime },$ $b^{\prime }.$ Assume that $a^{\prime }\leq a\leq b\leq b^{\prime },$ and moreover, it is possible to place the segment $b^{\prime }$ such that it completely lies in the interior of the parallelogram $P.$
Show that the parallelogram $P$ can be partitioned into four polygons such that these four polygons can be composed again to form the parallelogram $%
P^{\prime }.$
1954 Moscow Mathematical Olympiad, 265
From an arbitrary point $O$ inside a convex $n$-gon, perpendiculars are drawn on (extensions of the) sides of the $n$-gon. Along each perpendicular a vector is constructed, starting from $O$, directed towards the side onto which the perpendicular is drawn, and of length equal to half the length of the corresponding side. Find the sum of these vectors.
1994 Polish MO Finals, 2
A parallelopiped has vertices $A_1, A_2, ... , A_8$ and center $O$. Show that:
\[ 4 \sum_{i=1}^8 OA_i ^2 \leq \left(\sum_{i=1}^8 OA_i \right) ^2 \]
2005 China Team Selection Test, 3
Let $n$ be a positive integer, set $S_n = \{ (a_1,a_2,\cdots,a_{2^n}) \mid a_i=0 \ \text{or} \ 1, 1 \leq i \leq 2^n\}$. For any two elements $a=(a_1,a_2,\cdots,a_{2^n})$ and $b=(b_1,b_2,\cdots,b_{2^n})$ of $S_n$, define
\[ d(a,b)= \sum_{i=1}^{2^n} |a_i - b_i| \]
We call $A \subseteq S_n$ a $\textsl{Good Subset}$ if $d(a,b) \geq 2^{n-1}$ holds for any two distinct elements $a$ and $b$ of $A$. How many elements can the $\textsl{Good Subset}$ of $S_n$ at most have?
2013 Online Math Open Problems, 30
Pairwise distinct points $P_1,P_2,\ldots, P_{16}$ lie on the perimeter of a square with side length $4$ centered at $O$ such that $\lvert P_iP_{i+1} \rvert = 1$ for $i=1,2,\ldots, 16$. (We take $P_{17}$ to be the point $P_1$.) We construct points $Q_1,Q_2,\ldots,Q_{16}$ as follows: for each $i$, a fair coin is flipped. If it lands heads, we define $Q_i$ to be $P_i$; otherwise, we define $Q_i$ to be the reflection of $P_i$ over $O$. (So, it is possible for some of the $Q_i$ to coincide.) Let $D$ be the length of the vector $\overrightarrow{OQ_1} + \overrightarrow{OQ_2} + \cdots + \overrightarrow{OQ_{16}}$. Compute the expected value of $D^2$.
[i]Ray Li[/i]
2024 District Olympiad, P4
Let $H{}$ be the orthocenter of the triangle $ABC{}$ and $X{}$ be the midpoint of the side $BC.$ The perpendicular at $H{}$ to $HX{}$ intersects the sides $(AB)$ and $(AC)$ at $Y{}$ and $Z{}$ respectively. Let $O{}$ be the circumcenter of $ABC{}$ and $O'$ be the circumcenter of $BHC.$ [list=a]
[*]Prove that $HY=HZ.$
[*]Prove that $\overrightarrow{AY}+\overrightarrow{AZ}=2\overrightarrow{OO'}.$
[/list]
2011 Putnam, A4
For which positive integers $n$ is there an $n\times n$ matrix with integer entries such that every dot product of a row with itself is even, while every dot product of two different rows is odd?
2014 Purple Comet Problems, 29
Consider the sequences of six positive integers $a_1,a_2,a_3,a_4,a_5,a_6$ with the properties that $a_1=1$, and if for some $j > 1$, $a_j = m > 1$, then $m-1$ appears in the sequence $a_1,a_2,\dots,a_{j-1}$. Such sequences include $1,1,2,1,3,2$ and $1,2,3,1,4,1$ but not $1,2,2,4,3,2$. How many such sequences of six positive integers are there?
2004 IMC, 4
For $n\geq 1$ let $M$ be an $n\times n$ complex array with distinct eigenvalues $\lambda_1,\lambda_2,\ldots,\lambda_k$, with multiplicities $m_1,m_2,\ldots,m_k$ respectively. Consider the linear operator $L_M$ defined by $L_MX=MX+XM^T$, for any complex $n\times n$ array $X$. Find its eigenvalues and their multiplicities. ($M^T$ denotes the transpose matrix of $M$).
2008 Romania National Olympiad, 4
Let $ \mathcal G$ be the set of all finite groups with at least two elements.
a) Prove that if $ G\in \mathcal G$, then the number of morphisms $ f: G\to G$ is at most $ \sqrt [p]{n^n}$, where $ p$ is the largest prime divisor of $ n$, and $ n$ is the number of elements in $ G$.
b) Find all the groups in $ \mathcal G$ for which the inequality at point a) is an equality.
2003 All-Russian Olympiad Regional Round, 11.4
Points $ A_1,A_2,...,A_n$ and $ B_1,B_2,...,B_n$ are given on a plane. Show that the points $ B_i$ can be renumbered in such a way that the angle between vectors $ A_iA_j^{\longrightarrow}$ and $ B_iB_j^{\longrightarrow}$ is acute or right whenever $ i\neq j$.
2000 Bulgaria National Olympiad, 3
Let $A$ be the set of all binary sequences of length $n$ and denote $o =(0, 0, \ldots , 0) \in A$. Define the addition on $A$ as $(a_1, \ldots , a_n)+(b_1, \ldots , b_n) =(c_1, \ldots , c_n)$, where $c_i = 0$ when $a_i = b_i$ and $c_i = 1$ otherwise. Suppose that $f\colon A \to A$ is a function such that $f(0) = 0$, and for each $a, b \in A$, the sequences $f(a)$ and $f(b)$ differ in exactly as many places as $a$ and $b$ do. Prove that if $a$ , $b$, $c \in A$ satisfy $a+ b + c = 0$, then $f(a)+ f(b) + f(c) = 0$.
1993 All-Russian Olympiad Regional Round, 11.4
Given a regular $ 2n$-gon, show that each of its sides and diagonals can be assigned in such a way that the sum of the obtained vectors equals zero.
1981 Miklós Schweitzer, 5
Let $ K$ be a convex cone in the $ n$-dimensional real vector space $ \mathbb{R}^n$, and consider the sets $ A\equal{}K \cup (\minus{}K)$ and $ B\equal{}(\mathbb{R}^n \setminus A) \cup \{ 0 \}$ ($ 0$ is the origin). Show that one can find two subspaces in $ \mathbb{R}^n$ such that together they span $ \mathbb{R}^n$, and one of them lies in $ A$ and the other lies in $ B$.
[i]J. Szucs[/i]
1996 AMC 12/AHSME, 28
On a $4 \times 4 \times 3$ rectangular parallelepiped, vertices $A$, $B$, and $C$ are adjacent to vertex $D$. The perpendicular distance from $D$ to the plane containing
$A$, $B$, and $C$ is closest to
$\text{(A)}\ 1.6 \qquad \text{(B)}\ 1.9 \qquad \text{(C)}\ 2.1 \qquad \text{(D)}\ 2.7 \qquad \text{(E)}\ 2.9$
1991 Vietnam Team Selection Test, 3
Let $\{x\}$ be a sequence of positive reals $x_1, x_2, \ldots, x_n$, defined by: $x_1 = 1, x_2 = 9, x_3=9, x_4=1$. And for $n \geq 1$ we have:
\[x_{n+4} = \sqrt[4]{x_{n} \cdot x_{n+1} \cdot x_{n+2} \cdot x_{n+3}}.\]
Show that this sequence has a finite limit. Determine this limit.
2010 IFYM, Sozopol, 2
Let $A_1A_2A_3A_4A_5A_6A_7A_8$ be a right octagon with center $O$ and $\lambda_1$,$\lambda_2$, $\lambda_3$, $\lambda_4$ be some rational numbers for which:
$\lambda_1 \overrightarrow{OA_1}+\lambda_2 \overrightarrow{OA_2}+\lambda_3 \overrightarrow{OA_3}+\lambda_4 \overrightarrow{OA_4} =\overrightarrow{o}$.
Prove that $\lambda_1=\lambda_2=\lambda_3=\lambda_4=0$.
2006 Iran MO (3rd Round), 2
$n$ is a natural number that $\frac{x^{n}+1}{x+1}$ is irreducible over $\mathbb Z_{2}[x]$. Consider a vector in $\mathbb Z_{2}^{n}$ that it has odd number of $1$'s (as entries) and at least one of its entries are $0$. Prove that these vector and its translations are a basis for $\mathbb Z_{2}^{n}$
1967 IMO Shortlist, 5
Prove that for an arbitrary pair of vectors $f$ and $g$ in the space the inequality
\[af^2 + bfg +cg^2 \geq 0\]
holds if and only if the following conditions are fulfilled:
\[a \geq 0, \quad c \geq 0, \quad 4ac \geq b^2.\]
1990 IMO Shortlist, 28
Prove that on the coordinate plane it is impossible to draw a closed broken line such that
[i](i)[/i] the coordinates of each vertex are rational;
[i](ii)[/i] the length each of its edges is 1;
[i](iii)[/i] the line has an odd number of vertices.
2008 China Western Mathematical Olympiad, 4
Let P be an interior point of a regular n-gon $ A_1 A_2 ...A_n$, the lines $ A_i P$ meet the regular n-gon at another point $ B_i$, where $ i\equal{}1,2,...,n$. Prove that sums of all $ PA_i\geq$ sum of all $ PB_i$.
2005 Harvard-MIT Mathematics Tournament, 7
Let $ABCD$ be a tetrahedron such that edges $AB$, $AC$, and $AD$ are mutually perpendicular. Let the areas of triangles $ABC$, $ACD$, and $ADB$ be denoted by $x$, $y$, and $z$, respectively. In terms of $x$, $y$, and $z$, find the area of triangle $BCD$.