This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2025 Romania National Olympiad, 1

Let $N \geq 1$ be a positive integer. There are two numbers written on a blackboard, one red and one blue. Initially, both are 0. We define the following procedure: at each step, we choose a nonnegative integer $k$ (not necessarily distinct from the previously chosen ones), and, if the red and blue numbers are $x$ and $y$ respectively, we replace them with $x+k+1$ and $y+k^2+2$, which we color blue and red (in this order). We keep doing this procedure until the blue number is at least $N$. Determine the minimum value of the red number at the end of this procedure.

2024 Taiwan TST Round 2, C

Find all functions $f:\mathbb{N}\to\mathbb{N}$ s.t. for all $A\subset \mathbb{N}$ with 2024 elements, the set $$S_A:=\{f^{(k)}(x)\mid k=1,...,2024,x\in A\}$$ also has 2024 elements. ($f^{(k)}=f\circ f\circ...\circ f$ is the $k$-th iteration of $f$.)

2009 Rioplatense Mathematical Olympiad, Level 3, 3

Call a permutation of the integers $(1,2,\ldots,n)$ [i]$d$-ordered[/i] if it does not contains a decreasing subsequence of length $d$. Prove that for every $d=2,3,\ldots,n$, the number of $d$-ordered permutations of $(1,2,\ldots,n)$ is at most $(d-1)^{2n}$.

2012 India IMO Training Camp, 3

Determine the greatest positive integer $k$ that satisfies the following property: The set of positive integers can be partitioned into $k$ subsets $A_1, A_2, \ldots, A_k$ such that for all integers $n \geq 15$ and all $i \in \{1, 2, \ldots, k\}$ there exist two distinct elements of $A_i$ whose sum is $n.$ [i]Proposed by Igor Voronovich, Belarus[/i]

2009 Tournament Of Towns, 4

Several zeros and ones are written down in a row. Consider all pairs of digits (not necessarily adjacent) such that the left digit is $1$ while the right digit is $0$. Let $M$ be the number of the pairs in which $1$ and $0$ are separated by an even number of digits (possibly zero), and let $N$ be the number of the pairs in which $1$ and $0$ are separated by an odd number of digits. Prove that $M \ge N$.

2017 Grand Duchy of Lithuania, 2

A deck of $52$ cards is stacked in a pile facing down. Tom takes the small pile consisting of the seven cards on the top of the deck, turns it around, and places it at the bottom of the deck. All cards are again in one pile, but not all of them face down, since the seven cards at the bottom now face up. Tom repeats this move until all cards face down again. In total, how many moves did Tom make?

2021 Israel National Olympiad, P1

Sophie wrote on a piece of paper every integer number from 1 to 1000 in decimal notation (including both endpoints). [b]a)[/b] Which digit did Sophie write the most? [b]b)[/b] Which digit did Sophie write the least?

2018 MOAA, 6

Consider an $m \times n$ grid of unit squares. Let $R$ be the total number of rectangles of any size, and let $S$ be the total number of squares of any size. Assume that the sides of the rectangles and squares are parallel to the sides of the $m \times n$ grid. If $\frac{R}{S} =\frac{759}{50}$ , then determine $mn$.

2018 APMO, 4

Let $ABC$ be an equilateral triangle. From the vertex $A$ we draw a ray towards the interior of the triangle such that the ray reaches one of the sides of the triangle. When the ray reaches a side, it then bounces off following the law of reflection, that is, if it arrives with a directed angle $\alpha$, it leaves with a directed angle $180^{\circ}-\alpha$. After $n$ bounces, the ray returns to $A$ without ever landing on any of the other two vertices. Find all possible values of $n$.

Kvant 2024, M2786

There are $100$ white points on a circle. Asya and Borya play the following game: they alternate, starting with Asya, coloring a white point in green or blue. Asya wants to obtain as much as possible pairs of adjacent points of distinct colors, while Borya wants these pairs to be as less as possible. What is the maximal number of such pairs Asya can guarantee to obtain, no matter how Borya plays.

2021 MMATHS, Mixer Round

[b]p1.[/b] Prair takes some set $S$ of positive integers, and for each pair of integers she computes the positive difference between them. Listing down all the numbers she computed, she notices that every integer from $1$ to $10$ is on her list! What is the smallest possible value of $|S|$, the number of elements in her set $S$? [b]p2.[/b] Jake has $2021$ balls that he wants to separate into some number of bags, such that if he wants any number of balls, he can just pick up some bags and take all the balls out of them. What is the least number of bags Jake needs? [b]p3.[/b] Claire has stolen Cat’s scooter once again! She is currently at (0; 0) in the coordinate plane, and wants to ride to $(2, 2)$, but she doesn’t know how to get there. So each second, she rides one unit in the positive $x$ or $y$-direction, each with probability $\frac12$ . If the probability that she makes it to $(2, 2)$ during her ride can be expressed as $\frac{a}{b}$ for positive integers $a, b$ with $gcd(a, b) = 1$, then find $a + b$. [b]p4.[/b] Triangle $ABC$ with $AB = BC = 6$ and $\angle ABC = 120^o$ is rotated about $A$, and suppose that the images of points $B$ and $C$ under this rotation are $B'$ and $C'$, respectively. Suppose that $A$, $B'$ and $C$ are collinear in that order. If the area of triangle $B'CC'$ can be expressed as $a - b\sqrt{c}$ for positive integers $a, b, c$ with csquarefree, find $a + b + c$. [b]p5.[/b] Find the sum of all possible values of $a + b + c + d$ if $a, b, c, $d are positive integers satisfying $$ab + cd = 100,$$ $$ac + bd = 500.$$ [b]p6.[/b] Alex lives in Chutes and Ladders land, which is set in the coordinate plane. Each step they take brings them one unit to the right or one unit up. However, there’s a chute-ladder between points $(1, 2)$ and $(2, 0)$ and a chute-ladder between points $(1, 3)$ and $(4, 0)$, whenever Alex visits an endpoint on a chute-ladder, they immediately appear at the other endpoint of that chute-ladder! How many ways are there for Alex to go from $(0, 0)$ to $(4, 4)$? [b]p7.[/b] There are $8$ identical cubes that each belong to $8$ different people. Each person randomly picks a cube. The probability that exactly $3$ people picked their own cube can be written as $\frac{a}{b}$ , where $a$ and $b$ are positive integers with $gcd(a, b) = 1$. Find $a + b$. [b]p8.[/b] Suppose that $p(R) = Rx^2 + 4x$ for all $R$. There exist finitely many integer values of $R$ such that $p(R)$ intersects the graph of $x^3 + 2021x^2 + 2x + 1$ at some point $(j, k)$ for integers $j$ and $k$. Find the sum of all possible values of $R$. [b]p9.[/b] Let $a, b, c$ be the roots of the polynomial $x^3 - 20x^2 + 22$. Find $\frac{bc}{a^2} +\frac{ac}{b^2} +\frac{ab}{c^2}$. [b]p10.[/b] In any finite grid of squares, some shaded and some not, for each unshaded square, record the number of shaded squares horizontally or vertically adjacent to it, this grid’s score is the sum of all numbers recorded this way. Deyuan shades each square in a blank $n \times n$ grid with probability $k$; he notices that the expected value of the score of the resulting grid is equal to $k$, too! Given that $k > 0.9999$, find the minimum possible value of $n$. [b]p11.[/b] Find the sum of all $x$ from $2$ to $1000$ inclusive such that $$\prod^x_{n=2} \log_{n^n}(n + 1)^{n+2}$$ is an integer. [b]p12.[/b] Let triangle $ABC$ with incenter $I$ and circumcircle $\Gamma$ satisfy $AB = 6\sqrt3$, $BC = 14$, and $CA = 22$. Construct points $P$ and $Q$ on rays $BA$ and $CA$ such that $BP = CQ = 14$. Lines $PI$ and $QI$ meet the tangents from $B$ and $C$ to $\Gamma$, respectively, at points $X$ and $Y$ . If $XY$ can be expressed as $a\sqrt{b}-c$ for positive integers $a, b, c$ with $c$ squarefree, find $a + b + c$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2017 Mediterranean Mathematics Olympiad, Problem 3

A set $S$ of integers is Balearic, if there are two (not necessarily distinct) elements $s,s'\in S$ whose sum $s+s'$ is a power of two; otherwise it is called a non-Balearic set. Find an integer $n$ such that $\{1,2,\ldots,n\}$ contains a 99-element non-Balearic set, whereas all the 100-element subsets are Balearic.

2007 Junior Balkan Team Selection Tests - Romania, 2

There are given the integers $1 \le m < n$. Consider the set $M = \{ (x,y);x,y \in \mathbb{Z_{+}}, 1 \le x,y \le n \}$. Determine the least value $v(m,n)$ with the property that for every subset $P \subseteq M$ with $|P| = v(m,n)$ there exist $m+1$ elements $A_{i}= (x_{i},y_{i}) \in P, i = 1,2,...,m+1$, for which the $x_{i}$ are all distinct, and $y_{i}$ are also all distinct.

1997 Bulgaria National Olympiad, 3

Let $X$ be a set of $n + 1$ elements, $n\geq 2$. Ordered $n$-tuples $(a_1,\ldots,a_n)$ and $(b_1,\ldots,b_n)$ formed from distinct elements of $X$ are called[i] disjoint [/i]if there exist distinct indices $1\leq i \neq j\leq n$ such that $a_i = b_j$. Find the maximal number of pairwise disjoint $n$-tuples.

2020 Stars of Mathematics, 4

Prove that, if every three consecutive vertices of a convex $n{}$-gon, $n\geqslant 4$, span a triangle of area at least 1, then the area of the $n{}$-gon is (strictly) greater than $(n\log_2 n)/4-1/2.$ [i]Radu Bumbăcea & Călin Popescu[/i]

2000 Tournament Of Towns, 1

Each of the $16$ squares in a $4 \times 4$ table contains a number. For any square, the sum of the numbers in the squares sharing a common side with the chosen square is equal to $1$. Determine the sum of all $16$ numbers in the table. (R Zhenodarov)

2011 Brazil Team Selection Test, 3

On some planet, there are $2^N$ countries $(N \geq 4).$ Each country has a flag $N$ units wide and one unit high composed of $N$ fields of size $1 \times 1,$ each field being either yellow or blue. No two countries have the same flag. We say that a set of $N$ flags is diverse if these flags can be arranged into an $N \times N$ square so that all $N$ fields on its main diagonal will have the same color. Determine the smallest positive integer $M$ such that among any $M$ distinct flags, there exist $N$ flags forming a diverse set. [i]Proposed by Tonći Kokan, Croatia[/i]

2010 Macedonia National Olympiad, 3

A total of $2010$ coins are distributed in $5$ boxes. At the beginning the quantities of coins in the boxes are consecutive natural numbers. Martha should choose and take one of the boxes, but before that she can do the following transformation finitely many times: from a box with at least 4 coins she can transfer one coin to each of the other boxes. What is the maximum number of coins that Martha can take away?

1992 IMO Shortlist, 17

Let $ \alpha(n)$ be the number of digits equal to one in the binary representation of a positive integer $ n.$ Prove that: (a) the inequality $ \alpha(n) (n^2 ) \leq \frac{1}{2} \alpha(n)(\alpha(n) + 1)$ holds; (b) the above inequality is an equality for infinitely many positive integers, and (c) there exists a sequence $ (n_i )^{\infty}_1$ such that $ \frac{\alpha ( n^2_i )}{\alpha (n_i }$ goes to zero as $ i$ goes to $ \infty.$ [i]Alternative problem:[/i] Prove that there exists a sequence a sequence $ (n_i )^{\infty}_1$ such that $ \frac{\alpha ( n^2_i )}{\alpha (n_i )}$ (d) $ \infty;$ (e) an arbitrary real number $ \gamma \in (0,1)$; (f) an arbitrary real number $ \gamma \geq 0$; as $ i$ goes to $ \infty.$

2012 Iran Team Selection Test, 3

We call a subset $B$ of natural numbers [i]loyal[/i] if there exists natural numbers $i\le j$ such that $B=\{i,i+1,\ldots,j\}$. Let $Q$ be the set of all [i]loyal[/i] sets. For every subset $A=\{a_1<a_2<\ldots<a_k\}$ of $\{1,2,\ldots,n\}$ we set \[f(A)=\max_{1\le i \le k-1}{a_{i+1}-a_i}\qquad\text{and}\qquad g(A)=\max_{B\subseteq A, B\in Q} |B|.\] Furthermore, we define \[F(n)=\sum_{A\subseteq \{1,2,\ldots,n\}} f(A)\qquad\text{and}\qquad G(n)=\sum_{A\subseteq \{1,2,\ldots,n\}} g(A).\] Prove that there exists $m\in \mathbb N$ such that for each natural number $n>m$ we have $F(n)>G(n)$. (By $|A|$ we mean the number of elements of $A$, and if $|A|\le 1$, we define $f(A)$ to be zero). [i]Proposed by Javad Abedi[/i]

2018 Korea Junior Math Olympiad, 4

For a positive integer $n$, denote $p(n)$ to be the number of nonnegative integer tuples $(x,y,z,w)$ such that $x+2y+2z+3w=n$. Also, denote $q(n)$ to be the number of nonnegative integer tuples $(a,b,c,d)$ such that (i) $a+b+c+d=n$ (ii) $a \ge b \ge d$ (iii) $a \ge c \ge d$ Prove that for all $n$, $p(n) = q(n)$.

2006 Iran MO (3rd Round), 3

Let $C$ be a (probably infinite) family of subsets of $\mathbb{N}$ such that for every chain $C_{1}\subset C_{2}\subset \ldots$ of members of $C$, there is a member of $C$ containing all of them. Show that there is a member of $C$ such that no other member of $C$ contains it!

2017 Harvard-MIT Mathematics Tournament, 22

Kelvin the Frog and $10$ of his relatives are at a party. Every pair of frogs is either [i]friendly[/i] or [i]unfriendly[/i]. When $3$ pairwise friendly frogs meet up, they will gossip about one another and end up in a [i]fight[/i] (but stay [i]friendly[/i] anyway). When $3$ pairwise unfriendly frogs meet up, they will also end up in a [i]fight[/i]. In all other cases, common ground is found and there is no fight. If all $\binom{11}{3}$ triples of frogs meet up exactly once, what is the minimum possible number of fights?

1997 China Team Selection Test, 2

Let $n$ be a natural number greater than 6. $X$ is a set such that $|X| = n$. $A_1, A_2, \ldots, A_m$ are distinct 5-element subsets of $X$. If $m > \frac{n(n - 1)(n - 2)(n - 3)(4n - 15)}{600}$, prove that there exists $A_{i_1}, A_{i_2}, \ldots, A_{i_6}$ $(1 \leq i_1 < i_2 < \cdots, i_6 \leq m)$, such that $\bigcup_{k = 1}^6 A_{i_k} = 6$.

2021 Estonia Team Selection Test, 1

Juku has the first $100$ volumes of the Harrie Totter book series at his home. For every$ i$ and $j$, where $1 \le i < j \le 100$, call the pair $(i, j)$ reversed if volume No. $j$ is before volume No, $i$ on Juku’s shelf. Juku wants to arrange all volumes of the series to one row on his shelf in such a way that there does not exist numbers $i, j, k$, where $1 \le i < j < k \le 100$, such that pairs $(i, j)$ and $(j, k)$ are both reversed. Find the largest number of reversed pairs that can occur under this condition