This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 229

2025 CMIMC Team, 1

Tags: team
I define a "good day" as a day when both the day and the month evenly divide the concatenation of the two. For example, today (March $15$) is a good day since $3$ and $15$ both divide $315.$ However, March $9$ is not a good day since $9$ does not divide $39.$ How many good days are in March, April, and May combined?

2024 HMNT, 10

Tags: team
For each positive integer $n,$ let $f(n)$ be either the unique integer $r \in \{0,1, \ldots, n-1\}$ such that $n$ divides $15r-1,$ or $0$ if such $r$ does not exist. Compute $$f(16)+f(17)+f(18)+\cdots+f(300).$$

2025 Harvard-MIT Mathematics Tournament, 5

Tags: team
Let $\triangle{ABC}$ be an acute triangle with orthocenter $H.$ Points $E$ and $F$ are on segments $\overline{AC}$ and $\overline{AB},$ respectively, such that $\angle{EHF}=90^\circ.$ Let $X$ be the foot of the perpendicular from $H$ to $\overline{EF}.$ Prove that $\angle{BXC}=90^\circ.$

2018 MOAA, 1

Tags: team , geometry
In $\vartriangle ABC$, $AB = 3$, $BC = 5$, and $CA = 6$. Points $D$ and $E$ are chosen such that $ACDE$ is a square which does not overlap with $\vartriangle ABC$. The length of $BD$ can be expressed in the form $\sqrt{m + n\sqrt{p}}$, where $m$, $n$, and $p$ are positive integers and $p$ is not divisible by the square of a prime. Determine the value of $m + n + p$.

2018 CMIMC Team, 6-1/6-2

Tags: team
Jan rolls a fair six-sided die and calls the result $r$. Then, he picks real numbers $a$ and $b$ between 0 and 1 uniformly at random and independently. If the probability that the polynomial $\tfrac{x^2}{r} - x\sqrt{a} + b$ has a real root can be expressed as simplified fraction $\frac{p}{q}$, find $p$. Let $T = TNYWR$. Compute the number of ordered triples $(a,b,c)$ such that $a$, $b$, and $c$ are distinct positive integers and $a + b + c = T$.

2023 CMIMC Team, 8

Tags: team
NASA is launching a spaceship at the south pole, but a sudden earthquake shock caused the spaceship to be launched at an angle of $\theta$ from vertical ($0 < \theta < 90^\circ$). The spaceship crashed back to Earth, and NASA found the debris floating in the ocean in the northern hemisphere. NASA engineers concluded that $\tan \theta > M$, where $M$ is maximal. Find $M$. Assume that the Earth is a sphere, and the trajectory of the spaceship (in the reference frame of Earth) is an ellipse with the center of the Earth one of the foci. [i]Proposed by Kevin You[/i]

2019 MOAA, 7

Suppose $ABC$ is a triangle inscribed in circle $\omega$ . Let $A'$ be the point on $\omega$ so that $AA'$ is a diameter, and let $G$ be the centroid of $ABC$. Given that $AB = 13$, $BC = 14$, and $CA = 15$, let $x$ be the area of triangle $AGA'$ . If $x$ can be expressed in the form $m/n$ , where m and n are relatively prime positive integers, compute $100n + m$.

2025 Harvard-MIT Mathematics Tournament, 9

Tags: team
Let $\mathbb{Z}$ be the set of integers. Determine, with proof, all primes $p$ for which there exists a function $f:\mathbb{Z}\to\mathbb{Z}$ such that for any integer $x,$ $\quad \bullet \ f(x+p)=f(x)\text{ and}$ $\quad \bullet \ p \text{ divides } f(x+f(x))-x.$

2024 HMNT, 3

Tags: team
Rectangle $R$ with area $20$ and diagonal of length $7$ is translated $2$ units in some direction to form a new rectangle $R'.$ The vertices of $R$ and $R'$ that are not contained in the other rectangle form a convex hexagon. Compute the maximum possible area of this hexagon.

2024 LMT Fall, 12

Tags: team
Eddie assigns each of Jason, Jerry, and Jonathan a different positive integer. The three are each perfectly logical and currently know that their numbers are distinct but don't know each other's numbers. Additionally, if one of them knows the answer to the question they will say so immediately. They have the following conversation listed below in chronological order: [list] [*] Eddie: Does anyone know who has the smallest number? [*] Jason, Jerry, Jonathan (at the same time): I'm not sure. [*] Jonathan: Now I know who has the smallest number. [*] Eddie: Does anyone know who has the largest number? [*] Jason, Jonathan, Jerry (at the same time): I'm not sure. [*] Jerry: Now I know who has the largest number. [*] Jason: Wow, our numbers are in an geometric sequence! [/list] Find the sum of their numbers.

2024 CMIMC Team, 2

Tags: team
Let $\triangle ABC$ be equilateral. Let $D$ be the midpoint of side $AC,$ and let $DEFG$ be a square such that $D, F, B$ are collinear and $E,G$ lie on $AB,CB$ respectively. What fraction of the area of $\triangle ABC$ is covered by square $DEFG?$ [i]Proposed by Lohith Tummala[/i]

2024 LMT Fall, 10

Tags: team
Find the sum of all positive integers $n\le 2024$ such that all pairs of distinct positive integers $(a,b)$ that satisfy $ab=n$ have a sum that is a perfect square.

2024 HMNT, 5

Tags: team
Let $ABCD$ be a convex quadrilateral with area $202, AB = 4,$ and $\angle A = \angle B = 90^\circ$ such that there is exactly one point $E$ on line $CD$ satisfying $\angle AEB = 90^\circ.$ Compute the perimeter of $ABCD.$

2016 CMIMC, 7

Tags: team
In $\triangle ABC$, $AB=17$, $AC=25$, and $BC=28$. Points $M$ and $N$ are the midpoints of $\overline{AB}$ and $\overline{AC}$ respectively, and $P$ is a point on $\overline{BC}$. Let $Q$ be the second intersection point of the circumcircles of $\triangle BMP$ and $\triangle CNP$. It is known that as $P$ moves along $\overline{BC}$, line $PQ$ passes through some fixed point $X$. Compute the sum of the squares of the distances from $X$ to each of $A$, $B$, and $C$.

2020 CMIMC Team, 11

Tags: team
Find the number of ordered triples of integers $(a,b,c)$, each between $1$ and $64$, such that \[ a^2 + b^2 \equiv c^2\pmod{64}. \]

2022 CMIMC, 1

Tags: team
Let $A_1A_2A_3A_4$ and $B_1B_2B_3B_4$ be two squares such that the boundaries of $A_1A_2A_3A_4$ and $B_1B_2B_3B_4$ does not contain any line segment. Construct 16 line segments $A_iB_j$ for each possible $i,j \in \{1,2,3,4\}$. What is the maximum number of line segments that don't intersect the edges of $A_1A_2A_3A_4$ or $B_1B_2B_3B_4$? (intersection with a vertex is not counted). [i]Proposed by Allen Zheng[/i]

2023 CMIMC Team, 12

Tags: team
Let $ABC$ be an acute triangle with circumcircle $\omega$. Let $D$ and $E$ be the feet of the altitudes from $B$ and $C$ onto sides $AC$ and $AB$, respectively. Lines $BD$ and $CE$ intersect $\omega$ again at points $P \neq B$ and $Q \neq C$. Suppose that $PD=3$, $QE=2$, and $AP \parallel BC$. Compute $DE$. [i]Proposed by Kyle Lee[/i]

2020 CMIMC Team, 6

Tags: team
Misha is currently taking a Complexity Theory exam, but he seems to have forgotten a lot of the material! In the question, he is asked to fill in the following boxes with $\subseteq$ and $\subsetneq$ to identify the relationship between different complexity classes: $$\mathsf{NL}\ \fbox{\phantom{tt}}\ \mathsf{P}\ \fbox{\phantom{tt}}\ \mathsf{NP}\ \fbox{\phantom{tt}}\ \mathsf{PH}\ \fbox{\phantom{tt}}\ \mathsf{PSPACE}\ \fbox{\phantom{tt}}\ \mathsf {EXP}$$ and $$\mathsf{coNL}\ \fbox{\phantom{tt}}\ \mathsf{P}\ \fbox{\phantom{tt}}\ \mathsf{coNP}\ \fbox{\phantom{tt}}\ \mathsf{PH}$$ Luckily, he remembers that $\mathsf{P} \neq \mathsf{EXP}$, $\mathsf{NL} \neq \mathsf{PSPACE}$, $\mathsf{coNL} \neq \mathsf{PSPACE}$, and $\mathsf{NP} \neq \mathsf{coNP}\implies \mathsf{P}\neq \mathsf{NP} \land \mathsf{P}\neq \mathsf{coNP}$. How many ways are there for him to fill in the boxes so as not to contradict what he remembers?

2019 CMIMC, 15

Tags: polynomial , algebra , team
Call a polynomial $P$ [i]prime-covering[/i] if for every prime $p$, there exists an integer $n$ for which $p$ divides $P(n)$. Determine the number of ordered triples of integers $(a,b,c)$, with $1\leq a < b < c \leq 25$, for which $P(x)=(x^2-a)(x^2-b)(x^2-c)$ is prime-covering.

2024 LMT Fall, 8

Tags: team
Let $a$ and $b$ be positive integers such that $10< \gcd(a,b) < 20$ and $220 < \text{lcm}(a,b) < 230$. Find the difference between the smallest and largest possible values of $ab$.

2018 MOAA, 3

Tags: team , geometry
Let $BE$ and $CF$ be altitudes in triangle $ABC$. If $AE = 24$, $EC = 60$, and $BF = 31$, determine $AF$.

2024 CMIMC Team, 5

Tags: team
An ant is currently on a vertex of the top face on a 6-sided die. The ant wants to travel to the opposite vertex of the die (the vertex that is farthest from the start), and the ant can travel along edges of the die to other vertices that are on the top face of the die. Every second, the ant picks a valid edge to move along, and the die randomly flips to an adjacent face. If the ant is on any of the bottom vertices after the flip, it is crushed and dies. What is the probability that the ant makes it to its target? (If the ant makes it to the target and the die rolls to crush it, it achieved its dreams before dying, so this counts.) [i]Proposed by Lohith Tummala[/i]

MOAA Team Rounds, 2021.9

Tags: team
Mr. DoBa has a bag of markers. There are 2 blue, 3 red, 4 green, and 5 yellow markers. Mr. DoBa randomly takes out two markers from the bag. The probability that these two markers are different colors can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Compute $m+n$. [i]Proposed by Raina Yang[/i]

2021 MOAA, 17

Tags: team
Compute the remainder when $10^{2021}$ is divided by $10101$. [i]Proposed by Nathan Xiong[/i]

2020 CMIMC Team, 7

Tags: team
Points $P$ and $Q$ lie on a circle $\omega$. The tangents to $\omega$ at $P$ and $Q$ intersect at point $T$, and point $R$ is chosen on $\omega$ so that $T$ and $R$ lie on opposite sides of $PQ$ and $\angle PQR = \angle PTQ$. Let $RT$ meet $\omega$ for the second time at point $S$. Given that $PQ = 12$ and $TR = 28$, determine $PS$.