This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2002 Junior Balkan Team Selection Tests - Moldova, 4

$9$ chess players participate in a chess tournament. According to the regulation, each participant plays a single game with each of the others. At a certain moment of the competition it was found that exactly two participants played the same number of party. To prove that in this case, not a single chess player played any the game, or just one chess player played with everyone else.

2016 China Team Selection Test, 5

Let $S$ be a finite set of points on a plane, where no three points are collinear, and the convex hull of $S$, $\Omega$, is a $2016-$gon $A_1A_2\ldots A_{2016}$. Every point on $S$ is labelled one of the four numbers $\pm 1,\pm 2$, such that for $i=1,2,\ldots , 1008,$ the numbers labelled on points $A_i$ and $A_{i+1008}$ are the negative of each other. Draw triangles whose vertices are in $S$, such that any two triangles do not have any common interior points, and the union of these triangles is $\Omega$. Prove that there must exist a triangle, where the numbers labelled on some two of its vertices are the negative of each other.

2022 Saudi Arabia BMO + EGMO TST, 2.3

A rectangle $R$ is partitioned into smaller rectangles whose sides are parallel with the sides of $R$. Let $B$ be the set of all boundary points of all the rectangles in the partition, including the boundary of $R$. Let S be the set of all (closed) segments whose points belong to $B$. Let a maximal segment be a segment in $S$ which is not a proper subset of any other segment in $S$. Let an intersection point be a point in which $4$ rectangles of the partition meet. Let $m$ be the number of maximal segments, $i$ the number of intersection points and $r$ the number of rectangles. Prove that $m + i = r + 3$.

2015 Turkey Team Selection Test, 3

Let $m, n$ be positive integers. Let $S(n,m)$ be the number of sequences of length $n$ and consisting of $0$ and $1$ in which there exists a $0$ in any consecutive $m$ digits. Prove that \[S(2015n,n).S(2015m,m)\ge S(2015n,m).S(2015m,n)\]

1971 All Soviet Union Mathematical Olympiad, 148

The volumes of the water containing in each of three big enough containers are integers. You are allowed only to relocate some times from one container to another the same volume of the water, that the destination already contains. Prove that you are able to discharge one of the containers.

1999 Harvard-MIT Mathematics Tournament, 3

How many non-empty subsets of $\{1, 2, 3, 4, 5, 6,7,8\}$ have exactly $k$ elements and do not contain the element $k$ for some $k = 1, 2,...,8$.

2020 Balkan MO Shortlist, C1

Let $s \geq 2$ and $n \geq k \geq 2$ be integes, and let $A$ be a subset of $\{1, 2, . . . , n\}^k$ of size at least $2sk^2n^{k-2}$ such that any two members of $A$ share some entry. Prove that there are an integer $p \leq k$ and $s+2$ members $A_1, A_2, . . . , A_{s+2}$ of $A$ such that $A_i$ and $A_j$ share the $p$-th entry alone, whenever $i$ and $j$ are distinct. [i]Miroslav Marinov, Bulgaria[/i]

1996 China Team Selection Test, 1

3 countries $A, B, C$ participate in a competition where each country has 9 representatives. The rules are as follows: every round of competition is between 1 competitor each from 2 countries. The winner plays in the next round, while the loser is knocked out. The remaining country will then send a representative to take on the winner of the previous round. The competition begins with $A$ and $B$ sending a competitor each. If all competitors from one country have been knocked out, the competition continues between the remaining 2 countries until another country is knocked out. The remaining team is the champion. [b]I.[/b] At least how many games does the champion team win? [b]II.[/b] If the champion team won 11 matches, at least how many matches were played?

2008 Germany Team Selection Test, 3

Given is a convex polygon $ P$ with $ n$ vertices. Triangle whose vertices lie on vertices of $ P$ is called [i]good [/i] if all its sides are unit length. Prove that there are at most $ \frac {2n}{3}$ [i]good[/i] triangles. [i]Author: Vyacheslav Yasinskiy, Ukraine[/i]

2015 Iran MO (2nd Round), 1

Consider a cake in the shape of a circle. It's been divided to some inequal parts by its radii. Arash and Bahram want to eat this cake. At the very first, Arash takes one of the parts. In the next steps, they consecutively pick up a piece adjacent to another piece formerly removed. Suppose that the cake has been divided to 5 parts. Prove that Arash can choose his pieces in such a way at least half of the cake is his.

MMPC Part II 1958 - 95, 1973

[b]p1.[/b] Solve the system of equations $$xy = 2x + 3y$$ $$yz = 2y + 3z$$ $$zx =2z+3x$$ [b]p2.[/b] For any integer $k$ greater than $1$ and any positive integer $n$ , prove that $n^k$ is the sum of $n$ consecutive odd integers. [b]p3.[/b] Determine all pairs of real numbers, $x_1$, $x_2$ with $|x_1|\le 1$ and $|x_2|\le 1$ which satisfy the inequality: $|x^2-1|\le |x-x_1||x-x_2|$ for all $x$ such that $|x| \ge 1$. [b]p4.[/b] Find the smallest positive integer having exactly $100$ different positive divisors. (The number $1$ counts as a divisor). [b]p5.[/b] $ABC$ is an equilateral triangle of side $3$ inches. $DB = AE = 1$ in. and $F$ is the point of intersection of segments $\overline{CD}$ and $\overline{BE}$ . Prove that $\overline{AF} \perp \overline{CD}$. [img]https://cdn.artofproblemsolving.com/attachments/f/a/568732d418f2b1aa8a4e8f53366df9fbc74bdb.png[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2014 Portugal MO, 3

Amélia and Beatriz play battleship on a $2n\times2n$ board, using very peculiar rules. Amélia begins by choosing $n$ lines and $n$ columns of the board, placing her $n^2$ submarines on the cells that lie on their intersections. Next, Beatriz chooses a set of cells that will explode. Which is the least number of cells that Beatriz has to choose in order to assure that at least a submarine will explode?

2006 Belarusian National Olympiad, 3

A finite set $V \in Z^2$ of vectors with integer coordinates is chosen on the plane. Each of them is painted one of the $n$ colors. The color is [i]suitable[/i] for the vector if this vector may be presented as' a linear combination (with integer coefficients) of the vectors from $V$ of this color. It is known,that for any vector from $Z^2$ there exist a suitable color. Find all $n$ such that there must exist a color which is suitable for any vector from $Z^2$ . (V. Lebed)

2005 MOP Homework, 2

Set $S=\{1,2,...,2004\}$. We denote by $d_1$ the number of subset of $S$ such that the sum of elements of the subset has remainder $7$ when divided by $32$. We denote by $d_2$ the number of subset of $S$ such that the sum of elements of the subset has remainder $14$ when divided by $16$. Compute $\frac{d_1}{d_2}$.

1993 Hungary-Israel Binational, 4

Find the largest possible number of rooks that can be placed on a $3n \times 3n$ chessboard so that each rook is attacked by at most one rook.

1987 All Soviet Union Mathematical Olympiad, 457

Some points with the integer coordinates are marked on the coordinate plane. Given a set of nonzero vectors. It is known, that if you apply the beginnings of those vectors to the arbitrary marked point, than there will be more marked ends of the vectors, than not marked. Prove that there is infinite number of marked points.

2016 BMT Spring, 9

On $5 \times 5$ grid of lattice points, every point is uniformly randomly colored blue, red, or green. Find the expected number of monochromatic triangles T with vertices chosen from the lattice grid, such that some two sides of $T$ are parallel to the axis.

2007 Czech and Slovak Olympiad III A, 4

The set $M=\{1,2,\ldots,2007\}$ has the following property: If $n$ is an element of $M$, then all terms in the arithmetic progression with its first term $n$ and common difference $n+1$, are in $M$. Does there exist an integer $m$ such that all integers greater than $m$ are elements of $M$?

2012 All-Russian Olympiad, 1

$101$ wise men stand in a circle. Each of them either thinks that the Earth orbits Jupiter or that Jupiter orbits the Earth. Once a minute, all the wise men express their opinion at the same time. Right after that, every wise man who stands between two people with a different opinion from him changes his opinion himself. The rest do not change. Prove that at one point they will all stop changing opinions.

2012 Regional Olympiad of Mexico Center Zone, 1

Consider the set: $A = \{1, 2,..., 100\}$ Prove that if we take $11$ different elements from $A$, there are $x, y$ such that $x \neq y$ and $0 < |\sqrt{x} - \sqrt{y}| < 1$

2005 Slovenia National Olympiad, Problem 4

Several teams from Littletown and Bigtown took part on a tournament. There were nine more teams from Bigtown than those from Littletown. Any two teams played exactly one match, and the winner and loser got 1 and 0 points respectively (no ties). The teams from Bigtown in total gained nine times more points than those from Littletown. What is the maximum possible number of wins of the best team from Littletown?

ABMC Team Rounds, 2020

[u]Round 1[/u] [b]1.1.[/b] A person asks for help every $3$ seconds. Over a time period of $5$ minutes, how many times will they ask for help? [b]1.2.[/b] In a big bag, there are $14$ red marbles, $15$ blue marbles, and$ 16$ white marbles. If Anuj takes a marble out of the bag each time without replacement, how many marbles does Anuj need to remove to be sure that he will have at least $3$ red marbles? [b]1.3.[/b] If Josh has $5$ distinct candies, how many ways can he pick $3$ of them to eat? [u]Round 2[/u] [b]2.1.[/b] Annie has a circular pizza. She makes $4$ straight cuts. What is the minimum number of slices of pizza that she can make? [b]2.2.[/b] What is the sum of the first $4$ prime numbers that can be written as the sum of two perfect squares? [b]2.3.[/b] Consider a regular octagon $ABCDEFGH$ inscribed in a circle of area $64\pi$. If the length of arc $ABC$ is $n\pi$, what is $n$? [u]Round 3[/u] [b]3.1.[/b] Let $ABCDEF$ be an equiangular hexagon with consecutive sides of length $6, 5, 3, 8$, and $3$. Find the length of the sixth side. [b]3.2.[/b] Jack writes all of the integers from $ 1$ to $ n$ on a blackboard except the even primes. He selects one of the numbers and erases all of its digits except the leftmost one. He adds up the new list of numbers and finds that the sum is $2020$. What was the number he chose? [b]3.3.[/b] Our original competition date was scheduled for April $11$, $2020$ which is a Saturday. The numbers $4116$ and $2020$ have the same remainder when divided by $x$. If $x$ is a prime number, find the sum of all possible $x$. [u]Round 4[/u] [b]4.1.[/b] The polynomials $5p^2 + 13pq + cq^2$ and $5p^2 + 13pq - cq^2$ where $c$ is a positive integer can both be factored into linear binomials with integer coefficients. Find $c$. [b]4.2.[/b] In a Cartesian coordinate plane, how many ways are there to get from $(0, 0)$ to $(2, 3)$ in $7$ moves, if each move consists of a moving one unit either up, down, left, or right? [b]4.3.[/b] Bob the Builder is building houses. On Monday he finds an empty field. Each day starting on Monday, he finishes building a house at noon. On the $n$th day, there is a $\frac{n}{8}$ chance that a storm will appear at $3:14$ PM and destroy all the houses on the field. At any given moment, Bob feels sad if and only if there is exactly $1$ house left on the field that is not destroyed. The probability that he will not be sad on Friday at $6$ PM can be expressed as $p/q$ in simplest form. Find $p + q$. PS. You should use hide for answers. Rounds 5-8 have been posted [url=https://artofproblemsolving.com/community/c3h2784570p24468605]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2019 Kazakhstan National Olympiad, 5

Given a checkered rectangle of size n × m. Is it always possible to mark $3$ or $4$ nodes of a rectangle so that at least one of the marked nodes lay on each straight line containing the side of the rectangle, and the non-self-intersecting polygon with vertices at these nodes has an area equal to $$\dfrac{1}{2}\min \left ( \text{gcd}(n, m), \dfrac{n+m}{\text{gcd}(n, m)} \right)$$?

LMT Speed Rounds, 2017

[b]p1.[/b] Find the number of zeroes at the end of $20^{17}$. [b]p2.[/b] Express $\frac{1}{\sqrt{20} +\sqrt{17}}$ in simplest radical form. [b]p3.[/b] John draws a square $ABCD$. On side $AB$ he draws point $P$ so that $\frac{BP}{PA}=\frac{1}{20}$ and on side $BC$ he draws point $Q$ such that $\frac{BQ}{QC}=\frac{1}{17}$ . What is the ratio of the area of $\vartriangle PBQ$ to the area of $ABCD$? [b]p4.[/b] Alfred, Bill, Clara, David, and Emily are sitting in a row of five seats at a movie theater. Alfred and Bill don’t want to sit next to each other, and David and Emily have to sit next to each other. How many arrangements can they sit in that satisfy these constraints? [b]p5.[/b] Alex is playing a game with an unfair coin which has a $\frac15$ chance of flipping heads and a $\frac45$ chance of flipping tails. He flips the coin three times and wins if he flipped at least one head and one tail. What is the probability that Alex wins? [b]p6.[/b] Positive two-digit number $\overline{ab}$ has $8$ divisors. Find the number of divisors of the four-digit number $\overline{abab}$. [b]p7.[/b] Call a positive integer $n$ diagonal if the number of diagonals of a convex $n$-gon is a multiple of the number of sides. Find the number of diagonal positive integers less than or equal to $2017$. [b]p8.[/b] There are $4$ houses on a street, with $2$ on each side, and each house can be colored one of 5 different colors. Find the number of ways that the houses can be painted such that no two houses on the same side of the street are the same color and not all the houses are different colors. [b]p9.[/b] Compute $$|2017 -|2016| -|2015-| ... |3-|2-1|| ...||||.$$ [b]p10.[/b] Given points $A,B$ in the coordinate plane, let $A \oplus B$ be the unique point $C$ such that $\overline{AC}$ is parallel to the $x$-axis and $\overline{BC}$ is parallel to the $y$-axis. Find the point $(x, y)$ such that $((x, y) \oplus (0, 1)) \oplus (1,0) = (2016,2017) \oplus (x, y)$. [b]p11.[/b] In the following subtraction problem, different letters represent different nonzero digits. $\begin{tabular}{ccccc} & M & A & T & H \\ - & & H & A & M \\ \hline & & L & M & T \\ \end{tabular}$ How many ways can the letters be assigned values to satisfy the subtraction problem? [b]p12.[/b] If $m$ and $n$ are integers such that $17n +20m = 2017$, then what is the minimum possible value of $|m-n|$? [b]p13. [/b]Let $f(x)=x^4-3x^3+2x^2+7x-9$. For some complex numbers $a,b,c,d$, it is true that $f (x) = (x^2+ax+b)(x^2+cx +d)$ for all complex numbers $x$. Find $\frac{a}{b}+ \frac{c}{d}$. [b]p14.[/b] A positive integer is called an imposter if it can be expressed in the form $2^a +2^b$ where $a,b$ are non-negative integers and $a \ne b$. How many almost positive integers less than $2017$ are imposters? [b]p15.[/b] Evaluate the infinite sum $$\sum^{\infty}_{n=1} \frac{n(n +1)}{2^{n+1}}=\frac12 +\frac34+\frac68+\frac{10}{16}+\frac{15}{32}+...$$ [b]p16.[/b] Each face of a regular tetrahedron is colored either red, green, or blue, each with probability $\frac13$ . What is the probability that the tetrahedron can be placed with one face down on a table such that each of the three visible faces are either all the same color or all different colors? [b]p17.[/b] Let $(k,\sqrt{k})$ be the point on the graph of $y=\sqrt{x}$ that is closest to the point $(2017,0)$. Find $k$. [b]p18.[/b] Alice is going to place $2016$ rooks on a $2016 \times 2016$ chessboard where both the rows and columns are labelled $1$ to $2016$; the rooks are placed so that no two rooks are in the same row or the same column. The value of a square is the sum of its row number and column number. The score of an arrangement of rooks is the sumof the values of all the occupied squares. Find the average score over all valid configurations. [b]p19.[/b] Let $f (n)$ be a function defined recursively across the natural numbers such that $f (1) = 1$ and $f (n) = n^{f (n-1)}$. Find the sum of all positive divisors less than or equal to $15$ of the number $f (7)-1$. [b]p20.[/b] Find the number of ordered pairs of positive integers $(m,n)$ that satisfy $$gcd \,(m,n)+ lcm \,(m,n) = 2017.$$ [b]p21.[/b] Let $\vartriangle ABC$ be a triangle. Let $M$ be the midpoint of $AB$ and let $P$ be the projection of $A$ onto $BC$. If $AB = 20$, and $BC = MC = 17$, compute $BP$. [b]p22.[/b] For positive integers $n$, define the odd parent function, denoted $op(n)$, to be the greatest positive odd divisor of $n$. For example, $op(4) = 1$, $op(5) = 5$, and $op(6) =3$. Find $\sum^{256}_{i=1}op(i).$ [b]p23.[/b] Suppose $\vartriangle ABC$ has sidelengths $AB = 20$ and $AC = 17$. Let $X$ be a point inside $\vartriangle ABC$ such that $BX \perp CX$ and $AX \perp BC$. If $|BX^4 -CX^4|= 2017$, the compute the length of side $BC$. [b]p24.[/b] How many ways can some squares be colored black in a $6 \times 6$ grid of squares such that each row and each column contain exactly two colored squares? Rotations and reflections of the same coloring are considered distinct. [b]p25.[/b] Let $ABCD$ be a convex quadrilateral with $AB = BC = 2$, $AD = 4$, and $\angle ABC = 120^o$. Let $M$ be the midpoint of $BD$. If $\angle AMC = 90^o$, find the length of segment $CD$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2018 PUMaC Combinatorics A, 8

Let $S_5$ be the set of permutations of $\{1,2,3,4,5\}$, and let $C$ be the convex hull of the set $$\{(\sigma(1),\sigma(2),\ldots,\sigma(5))\,|\,\sigma\in S_5\}.$$ Then $C$ is a polyhedron. What is the total number of $2$-dimensional faces of $C$?