Found problems: 14842
2001 Croatia National Olympiad, Problem 3
Numbers $1,\frac12,\frac13,\ldots,\frac1{2001}$ are written on a blackboard. A student erases two numbers $x,y$ and writes down the number $x+y+xy$ instead. Determine the number that will be written on the board after $2000$ such operations.
2020 Junior Macedonian National Olympiad, 5
Let $T$ be a triangle whose vertices have integer coordinates, such that each side of $T$ contains exactly $m$ points with integer coordinates. If the area of $T$ is less than $2020$, determine the largest possible value of $m$.
2008 USA Team Selection Test, 1
There is a set of $ n$ coins with distinct integer weights $ w_1, w_2, \ldots , w_n$. It is known that if any coin with weight $ w_k$, where $ 1 \leq k \leq n$, is removed from the set, the remaining coins can be split into two groups of the same weight. (The number of coins in the two groups can be different.) Find all $ n$ for which such a set of coins exists.
2018 Israel National Olympiad, 1
$n$ people sit in a circle. Each of them is either a liar (always lies) or a truthteller (always tells the truth). Every person knows exactly who speaks the truth and who lies. In their turn, each person says 'the person two seats to my left is a truthteller'. It is known that there's at least one liar and at least one truthteller in the circle.
[list=a]
[*] Is it possible that $n=2017?$
[*] Is it possible that $n=5778?$
[/list]
2012 Iran MO (3rd Round), 3
In a tree with $n$ vertices, for each vertex $x_i$, denote the longest paths passing through it by $l_i^1,l_i^2,...,l_i^{k_i}$. $x_i$ cuts those longest paths into two parts with $(a_i^1,b_i^1),(a_i^2,b_i^2),...,(a_i^{k_i},b_i^{k_i})$ vertices respectively. If $\max_{j=1,...,k_i} \{a_i^j\times b_i^j\}=p_i$, find the maximum and minimum values of $\sum_{i=1}^{n} p_i$.
[i]Proposed by Sina Rezaei[/i]
2025 Belarusian National Olympiad, 11.8
In some cells of the table $2025 \times 2025$ crosses are placed. A set of 2025 cells we will call balanced if no two of them are in the same row or column. It is known that any balanced set has at least $k$ crosses.
Find the minimal $k$ for which it is always possible to color crosses in two colors such that any balanced set has crosses of both colors.
[i]M. Karpuk[/i]
2010 Contests, 1
For a finite non empty set of primes $P$, let $m(P)$ denote the largest possible number of consecutive positive integers, each of which is divisible by at least one member of $P$.
(i) Show that $|P|\le m(P)$, with equality if and only if $\min(P)>|P|$.
(ii) Show that $m(P)<(|P|+1)(2^{|P|}-1)$.
(The number $|P|$ is the size of set $P$)
[i]Dan Schwarz, Romania[/i]
2008 Iran MO (3rd Round), 1
Prove that the number of pairs $ \left(\alpha,S\right)$ of a permutation $ \alpha$ of $ \{1,2,\dots,n\}$ and a subset $ S$ of $ \{1,2,\dots,n\}$ such that
\[ \forall x\in S: \alpha(x)\not\in S\]
is equal to $ n!F_{n \plus{} 1}$ in which $ F_n$ is the Fibonacci sequence such that $ F_1 \equal{} F_2 \equal{} 1$
2024 Princeton University Math Competition, A2 / B4
Arnie draws $20$ real numbers independently and uniformly at random from the interval $[0, 1].$ Given that the largest number that Arnie draws equals $\tfrac{19}{20},$ the expected value of the average of the $20$ numbers can be written as $\tfrac{m}{n}$ for relatively prime positive integers $m$ and $n.$ Find $m + n.$
2012 Tuymaada Olympiad, 4
$25$ little donkeys stand in a row; the rightmost of them is Eeyore. Winnie-the-Pooh wants to give a balloon of one of the seven colours of the rainbow to each donkey, so that successive donkeys receive balloons of different colours, and so that at least one balloon of each colour is given to some donkey. Eeyore wants to give to each of the $24$ remaining donkeys a pot of one of six colours of the rainbow (except red), so that at least one pot of each colour is given to some donkey (but successive donkeys can receive pots of the same colour). Which of the two friends has more ways to get his plan implemented, and how many times more?
[i]Eeyore is a character in the Winnie-the-Pooh books by A. A. Milne. He is generally depicted as a pessimistic, gloomy, depressed, old grey stuffed donkey, who is a friend of the title character, Winnie-the-Pooh. His name is an onomatopoeic representation of the braying sound made by a normal donkey. Of course, Winnie-the-Pooh is a fictional anthropomorphic bear.[/i]
[i]Proposed by F. Petrov[/i]
2022 IFYM, Sozopol, 8
Let $p$ and $q$ be mutually prime natural numbers greater than $1$. Starting with the permutation $(1, 2, . . . , n)$, in one move we can switch the places of two numbers if their difference is $p$ or $q$. Prove that with such moves we can get any another permutation if and only if $n \ge p + q - 1$.
2015 LMT, Team Round
[hide=Intro]The answers to each of the ten questions in this section are integers containing only the digits $ 1$ through $ 8$, inclusive. Each answer can be written into the grid on the answer sheet, starting from the cell with the problem number, and continuing across or down until the entire answer has been written. Answers may cross dark lines. If the answers are correctly filled in, it will be uniquely possible to write an integer from $ 1$ to $ 8$ in every cell of the grid, so that each number will appear exactly once in every row, every column, and every marked $2$ by $4$ box. You will get $7$ points for every correctly filled answer, and a $15$ point bonus for filling in every gridcell. It will help to work back and forth between the grid and the problems, although every problem is uniquely solvable on its own.
Please write clearly within the boxes. No points will be given for a cell without a number, with multiple
numbers, or with illegible handwriting.[/hide]
[img]https://cdn.artofproblemsolving.com/attachments/9/b/f4db097a9e3c2602b8608be64f06498bd9d58c.png[/img]
[b]1 ACROSS:[/b] Jack puts $ 10$ red marbles, $ 8$ green marbles and 4 blue marbles in a bag. If he takes out $11$ marbles, what is the expected number of green marbles taken out?
[b]2 DOWN:[/b] What is the closest integer to $6\sqrt{35}$ ?
[b]3 ACROSS: [/b]Alan writes the numbers $ 1$ to $64$ in binary on a piece of paper without leading zeroes. How many more times will he have written the digit $ 1$ than the digit $0$?
[b]4 ACROSS:[/b] Integers a and b are chosen such that $-50 < a, b \le 50$. How many ordered pairs $(a, b)$ satisfy the below equation? $$(a + b + 2)(a + 2b + 1) = b$$
[b]5 DOWN: [/b]Zach writes the numbers $ 1$ through $64$ in binary on a piece of paper without leading zeroes. How many times will he have written the two-digit sequence “$10$”?
[b]6 ACROSS:[/b] If you are in a car that travels at $60$ miles per hour, $\$1$ is worth $121$ yen, there are $8$ pints in a gallon, your car gets $10$ miles per gallon, a cup of coffee is worth $\$2$, there are 2 cups in a pint, a gallon of gas costs $\$1.50$, 1 mile is about $1.6$ kilometers, and you are going to a coffee shop 32 kilometers away for a gallon of coffee, how much, in yen, will it cost?
[b]7 DOWN:[/b] Clive randomly orders the letters of “MIXING THE LETTERS, MAN”. If $\frac{p}{m^nq}$ is the probability that he gets “LMT IS AN EXTREME THING” where p and q are odd integers, and $m$ is a prime number, then what is $m + n$?
[b]8 ACROSS:[/b] Joe is playing darts. A dartboard has scores of $10, 7$, and $4$ on it. If Joe can throw $12$ darts, how many possible scores can he end up with?
[b]9 ACROSS:[/b] What is the maximum number of bounded regions that $6$ overlapping ellipses can cut the plane into?
[b]10 DOWN:[/b] Let $ABC$ be an equilateral triangle, such that $A$ and $B$ both lie on a unit circle with center $O$. What is the maximum distance between $O$ and $C$? Write your answer be in the form $\frac{a\sqrt{b}}{c}$ where $b$ is not divisible by the square of any prime, and $a$ and $c$ share no common factor. What is $abc$ ?
PS. You had better use hide for answers.
LMT Speed Rounds, 2022 S
[b]p1.[/b] Aidan walks into a skyscraper’s first floor lobby and takes the elevator up $50$ floors. After exiting the elevator, he takes the stairs up another $10$ floors, then takes the elevator down $30$ floors. Find the floor number Aidan is currently on.
[b]p2.[/b] Jeff flips a fair coin twice and Kaylee rolls a standard $6$-sided die. The probability that Jeff flips $2$ heads and Kaylee rolls a $4$ is $P$. Find $\frac{1}{P}$ .
[b]p3.[/b] Given that $a\odot b = a + \frac{a}{b}$ , find $(4\odot 2)\odot 3$.
[b]p4.[/b] The following star is created by gluing together twelve equilateral triangles each of side length $3$. Find the outer perimeter of the star.
[img]https://cdn.artofproblemsolving.com/attachments/e/6/ad63edbf93c5b7d4c7e5d68da2b4632099d180.png[/img]
[b]p5.[/b] In Lexington High School’sMath Team, there are $40$ students: $20$ of whom do science bowl and $22$ of whom who do LexMACS. What is the least possible number of students who do both science bowl and LexMACS?
[b]p6.[/b] What is the least positive integer multiple of $3$ whose digits consist of only $0$s and $1$s? The number does not need to have both digits.
[b]p7.[/b] Two fair $6$-sided dice are rolled. The probability that the product of the numbers rolled is at least $30$ can be written as $\frac{a}{b}$ where $a$ and $b$ are relatively prime positive integers. Find $a +b$.
[b]p8.[/b] At the LHSMath Team Store, $5$ hoodies and $1$ jacket cost $\$13$, and $5$ jackets and $1$ hoodie cost $\$17$. Find how much $15$ jackets and $15$ hoodies cost, in dollars.
[b]p9.[/b] Eric wants to eat ice cream. He can choose between $3$ options of spherical ice cream scoops. The first option consists of $4$ scoops each with a radius of $3$ inches, which costs a total of $\$3$. The second option consists of a scoop with radius $4$ inches, which costs a total of $\$2$. The third option consists of $5$ scoops each with diameter $2$ inches, which costs a total of $\$1$. The greatest possible ratio of volume to cost of ice cream Eric can buy is nπ cubic inches per dollar. Find $3n$.
[b]p10.[/b] Jen claims that she has lived during at least part of each of five decades. What is the least possible age that Jen could be? (Assume that age is always rounded down to the nearest integer.)
[b]p11.[/b] A positive integer $n$ is called Maisylike if and only if $n$ has fewer factors than $n -1$. Find the sum of the values of $n$ that are Maisylike, between $2$ and $10$, inclusive.
[b]p12.[/b] When Ginny goes to the nearby boba shop, there is a $30\%$ chance that the employee gets her drink order wrong. If the drink she receives is not the one she ordered, there is a $60\%$ chance that she will drink it anyways. Given that Ginny drank a milk tea today, the probability she ordered it can be written as $\frac{a}{b}$ , where $a$ and $b$ are relatively prime positive integers. Find the value of $a +b$.
[b]p13.[/b] Alex selects an integer $m$ between $1$ and $100$, inclusive. He notices there are the same number of multiples of $5$ as multiples of $7$ betweenm and $m+9$, inclusive. Find how many numbers Alex could have picked.
[b]p14.[/b] In LMTown there are only rainy and sunny days. If it rains one day there’s a $30\%$ chance that it will rain the next day. If it’s sunny one day there’s a $90\%$ chance it will be sunny the next day. Over n days, as n approaches infinity, the percentage of rainy days approaches $k\%$. Find $10k$.
[b]p15.[/b] A bag of letters contains $3$ L’s, $3$ M’s, and $3$ T’s. Aidan picks three letters at random from the bag with replacement, and Andrew picks three letters at random fromthe bag without replacement. Given that the probability that both Aidan and Andrew pick one each of L, M, and T can be written as $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers, find $m+n$.
[b]p16.[/b] Circle $\omega$ is inscribed in a square with side length $2$. In each corner tangent to $2$ of the square’s sides and externally tangent to $\omega$ is another circle. The radius of each of the smaller $4$ circles can be written as $(a -\sqrt{b})$ where $a$ and $b$ are positive integers. Find $a +b$.
[img]https://cdn.artofproblemsolving.com/attachments/d/a/c76a780ac857f745067a8d6c4433efdace2dbb.png[/img]
[b]p17.[/b] In the nonexistent land of Lexingtopia, there are $10$ days in the year, and the Lexingtopian Math Society has $5$ members. The probability that no two of the LexingtopianMath Society’s members share the same birthday can be written as $\frac{a}{b}$ , where $a$ and $b$ are relatively prime positive integers. Find $a +b$.
[b]p18.[/b] Let $D(n)$ be the number of diagonals in a regular $n$-gon. Find $$\sum^{26}_{n=3} D(n).$$
[b]p19.[/b] Given a square $A_0B_0C_0D_0$ as shown below with side length $1$, for all nonnegative integers $n$, construct points $A_{n+1}$, $B_{n+1}$, $C_{n+1}$, and $D_{n+1}$ on $A_nB_n$, $B_nC_n$, $C_nD_n$, and $D_nA_n$, respectively, such that $$\frac{A_n A_{n+1}}{A_{n+1}B_n}=\frac{B_nB_{n+1}}{B_{n+1}C_n} =\frac{C_nC_{n+1}}{C_{n+1}D_n}=\frac{D_nD_{n+1}}{D_{n+1}A_n} =\frac34.$$
[img]https://cdn.artofproblemsolving.com/attachments/6/a/56a435787db0efba7ab38e8401cf7b06cd059a.png[/img]
The sum of the series $$\sum^{\infty}_{i=0} [A_iB_iC_iD_i ] = [A_0B_0C_0D_0]+[A_1B_1C_1D_1]+[A_2B_2C_2D_2]...$$ where $[P]$ denotes the area of polygon $P$ can be written as $\frac{a}{b}$ where $a$ and $b$ are relatively prime positive integers. Find $a +b$.
[b]p20.[/b] Let $m$ and $n$ be two real numbers such that $$\frac{2}{n}+m = 9$$
$$\frac{2}{m}+n = 1$$ Find the sum of all possible values of $m$ plus the sumof all possible values of $n$.
[b]p21.[/b] Let $\sigma (x)$ denote the sum of the positive divisors of $x$. Find the smallest prime $p$ such that $$\sigma (p!) \ge 20 \cdot \sigma ([p -1]!).$$
[b]p22.[/b] Let $\vartriangle ABC$ be an isosceles triangle with $AB = AC$. Let $M$ be the midpoint of side $\overline{AB}$. Suppose there exists a point X on the circle passing through points $A$, $M$, and $C$ such that $BMCX$ is a parallelogram and $M$ and $X$ are on opposite sides of line $BC$. Let segments $\overline{AX}$ and $\overline{BC}$ intersect at a point $Y$ . Given that $BY = 8$, find $AY^2$.
[b]p23.[/b] Kevin chooses $2$ integers between $1$ and $100$, inclusive. Every minute, Corey can choose a set of numbers and Kevin will tell him how many of the $2$ chosen integers are in the set. How many minutes does Corey need until he is certain of Kevin’s $2$ chosen numbers?
[b]p24.[/b] Evaluate $$1^{-1} \cdot 2^{-1} +2^{-1} \cdot 3^{-1} +3^{-1} \cdot 4^{-1} +...+(2015)^{-1} \cdot (2016)^{-1} \,\,\, (mod \,\,\,2017).$$
[b]p25.[/b] In scalene $\vartriangle ABC$, construct point $D$ on the opposite side of $AC$ as $B$ such that $\angle ABD = \angle DBC = \angle BC A$ and $AD =DC$. Let $I$ be the incenter of $\vartriangle ABC$. Given that $BC = 64$ and $AD = 225$, find$ BI$ .
[img]https://cdn.artofproblemsolving.com/attachments/b/1/5852dd3eaace79c9da0fd518cfdcd5dc13aecf.png[/img]
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2017 Bosnia And Herzegovina - Regional Olympiad, 2
Prove that numbers $1,2,...,16$ can be divided in sequence such that sum of any two neighboring numbers is perfect square
2020 Polish Junior MO Second Round, 3.
There is the tournament for boys and girls. Every person played exactly one match with every other person, there were no draws. It turned out that every person had lost at least one game. Furthermore every boy lost different number of matches that every other boy. Prove that there is a girl, who won a match with at least one boy.
2014 Indonesia MO Shortlist, C2
Show that the smallest number of colors that is needed for coloring numbers $1, 2,..., 2013$ so that for every two
number $a, b$ which is the same color, $ab$ is not a multiple of $2014$, is $3$ colors.
1982 IMO Longlists, 42
Let $\mathfrak F$ be the family of all $k$-element subsets of the set $\{1, 2, \ldots, 2k + 1\}$. Prove that there exists a bijective function $f :\mathfrak F \to \mathfrak F$ such that for every $A \in \mathfrak F$, the sets $A$ and $f(A)$ are disjoint.
2020 MOAA, Sets 6-9
[u]Set 6[/u]
[b]B16.[/b] Let $\ell_r$ denote the line $x + ry + r^2 = 420$. Jeffrey draws the lines $\ell_a$ and $\ell_b$ and calculates their single intersection point.
[b]B17.[/b] Let set $L$ consist of lines of the form $3x + 2ay = 60a + 48$ across all real constants a. For every line $\ell$ in $L$, the point on $\ell$ closest to the origin is in set $T$ . The area enclosed by the locus of all the points in $T$ can be expressed in the form nπ for some positive integer $n$. Compute $n$.
[b]B18.[/b] What is remainder when the $2020$-digit number $202020 ... 20$ is divided by $275$?
[u]Set 7[/u]
[b]B19.[/b] Consider right triangle $\vartriangle ABC$ where $\angle ABC = 90^o$, $\angle ACB = 30^o$, and $AC = 10$. Suppose a beam of light is shot out from point $A$. It bounces off side $BC$ and then bounces off side $AC$, and then hits point $B$ and stops moving. If the beam of light travelled a distance of $d$, then compute $d^2$.
[b]B20.[/b] Let $S$ be the set of all three digit numbers whose digits sum to $12$. What is the sum of all the elements in $S$?
[b]B21.[/b] Consider all ordered pairs $(m, n)$ where $m$ is a positive integer and $n$ is an integer that satisfy $$m! = 3n^2 + 6n + 15,$$ where $m! = m \times (m - 1) \times ... \times 1$. Determine the product of all possible values of $n$.
[u]Set 8[/u]
[b]B22.[/b] Compute the number of ordered pairs of integers $(m, n)$ satisfying $1000 > m > n > 0$ and $6 \cdot lcm(m - n, m + n) = 5 \cdot lcm(m, n)$.
[b]B23.[/b] Andrew is flipping a coin ten times. After every flip, he records the result (heads or tails). He notices that after every flip, the number of heads he had flipped was always at least the number of tails he had flipped. In how many ways could Andrew have flipped the coin?
[b]B24.[/b] Consider a triangle $ABC$ with $AB = 7$, $BC = 8$, and $CA = 9$. Let $D$ lie on $\overline{AB}$ and $E$ lie on $\overline{AC}$ such that $BCED$ is a cyclic quadrilateral and $D, O, E$ are collinear, where $O$ is the circumcenter of $ABC$. The area of $\vartriangle ADE$ can be expressed as $\frac{m\sqrt{n}}{p}$, where $m$ and $p$ are relatively prime positive integers, and $n$ is a positive integer not divisible by the square of any prime. What is $m + n + p$?
[u]Set 9[/u]
[i]This set consists of three estimation problems, with scoring schemes described.[/i]
[b]B25.[/b] Submit one of the following ten numbers: $$3 \,\,\,\, 6\,\,\,\, 9\,\,\,\, 12\,\,\,\, 15\,\,\,\, 18\,\,\,\, 21\,\,\,\, 24\,\,\,\, 27\,\,\,\, 30.$$
The number of points you will receive for this question is equal to the number you selected divided by the total number of teams that selected that number, then rounded up to the nearest integer. For example, if you and four other teams select the number $27$, you would receive $\left\lceil \frac{27}{5}\right\rceil = 6$ points.
[b]B26.[/b] Submit any integer from $1$ to $1,000,000$, inclusive. The standard deviation $\sigma$ of all responses $x_i$ to this question is computed by first taking the arithmetic mean $\mu$ of all responses, then taking the square root of average of $(x_i -\mu)^2$ over all $i$. More, precisely, if there are $N$ responses, then $$\sigma =\sqrt{\frac{1}{N} \sum^N_{i=1} (x_i -\mu)^2}.$$ For this problem, your goal is to estimate the standard deviation of all responses.
An estimate of $e$ gives $\max \{ \left\lfloor 130 ( min \{ \frac{\sigma }{e},\frac{e}{\sigma }\}^{3}\right\rfloor -100,0 \}$ points.
[b]B27.[/b] For a positive integer $n$, let $f(n)$ denote the number of distinct nonzero exponents in the prime factorization of $n$. For example, $f(36) = f(2^2 \times 3^2) = 1$ and $f(72) = f(2^3 \times 3^2) = 2$. Estimate $N = f(2) + f(3) +.. + f(10000)$.
An estimate of $e$ gives $\max \{30 - \lfloor 7 log_{10}(|N - e|)\rfloor , 0\}$ points.
PS. You had better use hide for answers. First sets have been posted [url=https://artofproblemsolving.com/community/c4h2777391p24371239]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2013 ELMO Shortlist, 10
Let $N\ge2$ be a fixed positive integer. There are $2N$ people, numbered $1,2,...,2N$, participating in a tennis tournament. For any two positive integers $i,j$ with $1\le i<j\le 2N$, player $i$ has a higher skill level than player $j$. Prior to the first round, the players are paired arbitrarily and each pair is assigned a unique court among $N$ courts, numbered $1,2,...,N$.
During a round, each player plays against the other person assigned to his court (so that exactly one match takes place per court), and the player with higher skill wins the match (in other words, there are no upsets). Afterwards, for $i=2,3,...,N$, the winner of court $i$ moves to court $i-1$ and the loser of court $i$ stays on court $i$; however, the winner of court 1 stays on court 1 and the loser of court 1 moves to court $N$.
Find all positive integers $M$ such that, regardless of the initial pairing, the players $2, 3, \ldots, N+1$ all change courts immediately after the $M$th round.
[i]Proposed by Ray Li[/i]
2014 National Olympiad First Round, 24
If the integers $1,2,\dots,n$ can be divided into two sets such that each of the two sets does not contain the arithmetic mean of its any two elements, what is the largest possible value of $n$?
$
\textbf{(A)}\ 7
\qquad\textbf{(B)}\ 8
\qquad\textbf{(C)}\ 9
\qquad\textbf{(D)}\ 10
\qquad\textbf{(E)}\ \text{None of the preceding}
$
2018 Brazil Team Selection Test, 2
Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.
1970 IMO Longlists, 38
Find the greatest integer $A$ for which in any permutation of the numbers $1, 2, \ldots , 100$ there exist ten consecutive numbers whose sum is at least $A$.
2019 Argentina National Olympiad, 6
The natural numbers from $1$ up to $300$ are evenly located around a circle. We say that such an ordering is [i]alternate [/i ]if each number is less than its two neighbors or is greater than its two neighbors. We will call a pair of neighboring numbers a [i]good [/i] pair if, by removing that pair from the circumference, the remaining numbers form an alternate ordering. Determine the least possible number of good pairs in which there can be an alternate ordering of the numbers from $1$ at $300$ inclusive.
2011 ELMO Shortlist, 2
A directed graph has each vertex with outdegree 2. Prove that it is possible to split the vertices into 3 sets so that for each vertex $v$, $v$ is not simultaneously in the same set with both of the vertices that it points to.
[i]David Yang.[/i]
[hide="Stronger Version"]See [url=http://www.artofproblemsolving.com/Forum/viewtopic.php?f=42&t=492100]here[/url].[/hide]
Kvant 2021, M2677
There are 20 buns with jam and 20 buns with treacle arranged in a row in random order. Alice and Bob take in turn a bun from any end of the row. Alice starts, and wants to finally obtain 10 buns of each type; Bob tries to prevent this. Is it true for any order of the buns that Alice can win no matter what are the actions of Bob?
[i]Alexandr Gribalko[/i]