Found problems: 393
2010 Iran Team Selection Test, 5
Circles $W_1,W_2$ intersect at $P,K$. $XY$ is common tangent of two circles which is nearer to $P$ and $X$ is on $W_1$ and $Y$ is on $W_2$. $XP$ intersects $W_2$ for the second time in $C$ and $YP$ intersects $W_1$ in $B$. Let $A$ be intersection point of $BX$ and $CY$. Prove that if $Q$ is the second intersection point of circumcircles of $ABC$ and $AXY$
\[\angle QXA=\angle QKP\]
1997 China Team Selection Test, 1
Given a real number $\lambda > 1$, let $P$ be a point on the arc $BAC$ of the circumcircle of $\bigtriangleup ABC$. Extend $BP$ and $CP$ to $U$ and $V$ respectively such that $BU = \lambda BA$, $CV = \lambda CA$. Then extend $UV$ to $Q$ such that $UQ = \lambda UV$. Find the locus of point $Q$.
2018 India IMO Training Camp, 2
In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.
2008 Bulgaria Team Selection Test, 2
In the triangle $ABC$, $AM$ is median, $M \in BC$, $BB_{1}$ and $CC_{1}$ are altitudes, $C_{1} \in AB$, $B_{1} \in AC$. The line through $A$ which is perpendicular to $AM$ cuts the lines $BB_{1}$ and $CC_{1}$ at points $E$ and $F$, respectively. Let $k$ be the circumcircle of $\triangle EFM$. Suppose also that $k_{1}$ and $k_{2}$ are circles touching both $EF$ and the arc $EF$ of $k$ which does not contain $M$. If $P$ and $Q$ are the points at which $k_{1}$ intersects $k_{2}$, prove that $P$, $Q$, and $M$ are collinear.
2007 China Team Selection Test, 1
Let $ ABC$ be a triangle. Circle $ \omega$Â passes through points $ B$ and $ C.$ Circle $ \omega_{1}$ is tangent internally to $ \omega$Â and also to sides $ AB$ and $ AC$ at $ T,\, P,$ and $ Q,$ respectively. Let $ M$ be midpoint of arc $ BC\, ($containing $ T)$ of Â$ \omega.$ Prove that lines $ PQ,\,BC,$ and $ MT$ are concurrent.
2009 Hong Kong TST, 4
Two circles $ C_1,C_2$ with different radii are given in the plane, they touch each other externally at $ T$. Consider any points $ A\in C_1$ and $ B\in C_2$, both different from $ T$, such that $ \angle ATB \equal{} 90^{\circ}$.
(a) Show that all such lines $ AB$ are concurrent.
(b) Find the locus of midpoints of all such segments $ AB$.
2012 Morocco TST, 4
Let $ABC$ be an acute triangle with circumcircle $\Omega$. Let $B_0$ be the midpoint of $AC$ and let $C_0$ be the midpoint of $AB$. Let $D$ be the foot of the altitude from $A$ and let $G$ be the centroid of the triangle $ABC$. Let $\omega$ be a circle through $B_0$ and $C_0$ that is tangent to the circle $\Omega$ at a point $X\not= A$. Prove that the points $D,G$ and $X$ are collinear.
[i]Proposed by Ismail Isaev and Mikhail Isaev, Russia[/i]
1993 Polish MO Finals, 2
A circle center $O$ is inscribed in the quadrilateral $ABCD$. $AB$ is parallel to and longer than $CD$ and has midpoint $M$. The line $OM$ meets $CD$ at $F$. $CD$ touches the circle at $E$. Show that $DE = CF$ iff $AB = 2CD$.
2006 Germany Team Selection Test, 3
Let $ABCD$ be a parallelogram. A variable line $g$ through the vertex $A$ intersects the rays $BC$ and $DC$ at the points $X$ and $Y$, respectively. Let $K$ and $L$ be the $A$-excenters of the triangles $ABX$ and $ADY$. Show that the angle $\measuredangle KCL$ is independent of the line $g$.
[i]Proposed by Vyacheslev Yasinskiy, Ukraine[/i]
2018 Brazil Team Selection Test, 3
In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.
2007 Italy TST, 1
Let $ABC$ an acute triangle.
(a) Find the locus of points that are centers of rectangles whose vertices lie on the sides of $ABC$;
(b) Determine if exist some points that are centers of $3$ distinct rectangles whose vertices lie on the sides of $ABC$.
2012 South africa National Olympiad, 5
Let $ABC$ be a triangle such that $AB\neq AC$. We denote its orthocentre by $H$, its circumcentre by $O$ and the midpoint of $BC$ by $D$. The extensions of $HD$ and $AO$ meet in $P$. Prove that triangles $AHP$ and $ABC$ have the same centroid.
2011 IberoAmerican, 3
Let $ABC$ be a triangle and $X,Y,Z$ be the tangency points of its inscribed circle with the sides $BC, CA, AB$, respectively. Suppose that $C_1, C_2, C_3$ are circle with chords $YZ, ZX, XY$, respectively, such that $C_1$ and $C_2$ intersect on the line $CZ$ and that $C_1$ and $C_3$ intersect on the line $BY$. Suppose that $C_1$ intersects the chords $XY$ and $ZX$ at $J$ and $M$, respectively; that $C_2$ intersects the chords $YZ$ and $XY$ at $L$ and $I$, respectively; and that $C_3$ intersects the chords $YZ$ and $ZX$ at $K$ and $N$, respectively. Show that $I, J, K, L, M, N$ lie on the same circle.
2006 China Team Selection Test, 1
Let $K$ and $M$ be points on the side $AB$ of a triangle $\triangle{ABC}$, and let $L$ and $N$ be points on the side $AC$. The point $K$ is between $M$ and $B$, and the point $L$ is between $N$ and $C$. If $\frac{BK}{KM}=\frac{CL}{LN}$, then prove that the orthocentres of the triangles $\triangle{ABC}$, $\triangle{AKL}$ and $\triangle{AMN}$ lie on one line.
2001 Czech-Polish-Slovak Match, 4
Distinct points $A$ and $B$ are given on the plane. Consider all triangles $ABC$ in this plane on whose sides $BC,CA$ points $D,E$ respectively can be taken so that
(i) $\frac{BD}{BC}=\frac{CE}{CA}=\frac{1}{3}$;
(ii) points $A,B,D,E$ lie on a circle in this order.
Find the locus of the intersection points of lines $AD$ and $BE$.
2009 India IMO Training Camp, 1
Let $ ABC$ be a triangle with $ \angle A = 60^{\circ}$.Prove that if $ T$ is point of contact of Incircle And Nine-Point Circle, Then $ AT = r$,
$ r$ being inradius.
2010 Romanian Master of Mathematics, 3
Let $A_1A_2A_3A_4$ be a quadrilateral with no pair of parallel sides. For each $i=1, 2, 3, 4$, define $\omega_1$ to be the circle touching the quadrilateral externally, and which is tangent to the lines $A_{i-1}A_i, A_iA_{i+1}$ and $A_{i+1}A_{i+2}$ (indices are considered modulo $4$ so $A_0=A_4, A_5=A_1$ and $A_6=A_2$). Let $T_i$ be the point of tangency of $\omega_i$ with the side $A_iA_{i+1}$. Prove that the lines $A_1A_2, A_3A_4$ and $T_2T_4$ are concurrent if and only if the lines $A_2A_3, A_4A_1$ and $T_1T_3$ are concurrent.
[i]Pavel Kozhevnikov, Russia[/i]
2013 Romania Team Selection Test, 2
Circles $\Omega $ and $\omega $ are tangent at a point $P$ ($\omega $ lies inside $\Omega $). A chord $AB$ of $\Omega $ is tangent to $\omega $ at $C;$ the line $PC$ meets $\Omega $ again at $Q.$ Chords $QR$ and $QS$ of $ \Omega $ are tangent to $\omega .$ Let $I,X,$ and $Y$ be the incenters of the triangles $APB,$ $ARB,$ and $ASB,$ respectively. Prove that $\angle PXI+\angle PYI=90^{\circ }.$
2014 Taiwan TST Round 3, 3
Let $M$ be any point on the circumcircle of triangle $ABC$. Suppose the tangents from $M$ to the incircle meet $BC$ at two points $X_1$ and $X_2$. Prove that the circumcircle of triangle $MX_1X_2$ intersects the circumcircle of $ABC$ again at the tangency point of the $A$-mixtilinear incircle.
2013 Lusophon Mathematical Olympiad, 6
Consider a triangle $ABC$. Let $S$ be a circumference in the interior of the triangle that is tangent to the sides $BC$, $CA$, $AB$ at the points $D$, $E$, $F$ respectively. In the exterior of the triangle we draw three circumferences $S_A$, $S_B$, $S_C$. The circumference $S_A$ is tangent to $BC$ at $L$ and to the prolongation of the lines $AB$, $AC$ at the points $M$, $N$ respectively. The circumference $S_B$ is tangent to $AC$ at $E$ and to the prolongation of the line $BC$ at $P$. The circumference $S_C$ is tangent to $AB$ at $F$ and to the prolongation of the line $BC$ at $Q$. Show that the lines $EP$, $FQ$ and $AL$ meet at a point of the circumference $S$.
2009 Belarus Team Selection Test, 2
Let $ ABCD$ be a convex quadrilateral and let $ P$ and $ Q$ be points in $ ABCD$ such that $ PQDA$ and $ QPBC$ are cyclic quadrilaterals. Suppose that there exists a point $ E$ on the line segment $ PQ$ such that $ \angle PAE \equal{} \angle QDE$ and $ \angle PBE \equal{} \angle QCE$. Show that the quadrilateral $ ABCD$ is cyclic.
[i]Proposed by John Cuya, Peru[/i]
2007 International Zhautykov Olympiad, 3
Let $ABCDEF$ be a convex hexagon and it`s diagonals have one common point $M$. It is known that the circumcenters of triangles $MAB,MBC,MCD,MDE,MEF,MFA$ lie on a circle.
Show that the quadrilaterals $ABDE,BCEF,CDFA$ have equal areas.
2005 All-Russian Olympiad, 2
We have an acute-angled triangle $ABC$, and $AA',BB'$ are its altitudes. A point $D$ is chosen on the arc $ACB$ of the circumcircle of $ABC$. If $P=AA'\cap BD,Q=BB'\cap AD$, show that the midpoint of $PQ$ lies on $A'B'$.
2013 Sharygin Geometry Olympiad, 19
a) The incircle of a triangle $ABC$ touches $AC$ and $AB$ at points $B_0$ and $C_0$ respectively. The bisectors of angles $B$ and $C$ meet the perpendicular bisector to the bisector $AL$ in points $Q$ and $P$ respectively. Prove that the lines $PC_0, QB_0$ and $BC$ concur.
b) Let $AL$ be the bisector of a triangle $ABC$. Points $O_1$ and $O_2$ are the circumcenters of triangles $ABL$ and $ACL$ respectively. Points $B_1$ and $C_1$ are the projections of $C$ and $B$ to the bisectors of angles $B$ and $C$ respectively. Prove that the lines $O_1C_1, O_2B_1,$ and $BC$ concur.
c) Prove that the two points obtained in pp. a) and b) coincide.
2023 Sinapore MO Open, P1
In a scalene triangle $ABC$ with centroid $G$ and circumcircle $\omega$ centred at $O$, the extension of $AG$ meets $\omega$ at $M$; lines $AB$ and $CM$ intersect at $P$; and lines $AC$ and $BM$ intersect at $Q$. Suppose the circumcentre $S$ of the triangle $APQ$ lies on $\omega$ and $A, O, S$ are collinear. Prove that $\angle AGO = 90^{o}$.