This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

Kvant 2019, M2576

A $8\times 8$ board is divided in dominoes (rectangles with dimensions $1 \times 2$ or $2 \times 1$). [list=a] [*] Prove that the total length of the border between horizontal and vertical dominoes is at most $52$. [*] Determine the maximum possible total length of the border between horizontal and vertical dominoes. [/list] [i]Proposed by B. Frenkin, A. Zaslavsky, E. Arzhantseva[/i]

2011 ELMO Shortlist, 5

Prove there exists a constant $c$ (independent of $n$) such that for any graph $G$ with $n>2$ vertices, we can split $G$ into a forest and at most $cf(n)$ disjoint cycles, where a) $f(n)=n\ln{n}$; b) $f(n)=n$. [i]David Yang.[/i]

2013 Silk Road, 4

In the film there is $n$ roles. For each $i$ ($1 \le i \le n$), the role of number $i$ can play $a_i$ a person, and one person can play only one role. Every day a casting is held, in which participate people for $n$ roles, and from each role only one person. Let $p$ be a prime number such that $p \ge a_1, \ldots, a_n, n$. Prove that you can have $p^k$ castings such that if we take any $k$ people who are tried in different roles, they together participated in some casting ($k$ is a natural number not exceeding $n$ ).

JOM 2014, 2.

In ZS Chess, an Ivanight attacks like a knight, except that if the attacked square is out of range, it goes through the edge and comes out from the other side of the board, and attacks that square instead. The ZS chessboard is an $8 \times 8$ board, where cells are coloured with $n$ distinct colours, where $n$ is a natural number, such that a Ivanight placed on any square attacks $ 8 $ squares that consist of all $n$ colours, and the colours appear equally many times in those $ 8 $ squares. For which values of $n$ does such a ZS chess board exist?

2010 CHMMC Fall, 15

A student puts $2010$ red balls and $1957$ blue balls into a box. Weiqing draws randomly from the box one ball at a time without replacement. She wins if, at anytime, the total number of blue balls drawn is more than the total number of red balls drawn. Assuming Weiqing keeps drawing balls until she either wins or runs out, ompute the probability that she eventually wins.

2002 Switzerland Team Selection Test, 8

In a group of $n$ people, every weekend someone organizes a party in which he invites all of his acquaintances. Those who meet at a party become acquainted. After each of the $n$ people has organized a party, there still are two people not knowing each other. Show that these two will never get to know each other at such a party.

2011 IMO Shortlist, 5

Let $m$ be a positive integer, and consider a $m\times m$ checkerboard consisting of unit squares. At the centre of some of these unit squares there is an ant. At time $0$, each ant starts moving with speed $1$ parallel to some edge of the checkerboard. When two ants moving in the opposite directions meet, they both turn $90^{\circ}$ clockwise and continue moving with speed $1$. When more than $2$ ants meet, or when two ants moving in perpendicular directions meet, the ants continue moving in the same direction as before they met. When an ant reaches one of the edges of the checkerboard, it falls off and will not re-appear. Considering all possible starting positions, determine the latest possible moment at which the last ant falls off the checkerboard, or prove that such a moment does not necessarily exist. [i]Proposed by Toomas Krips, Estonia[/i]

MathLinks Contest 6th, 6.2

A $n \times n$ matrix is filled with non-negative real numbers such that on each line and column the sum of the elements is $1$. Prove that one can choose n positive entries from the matrix, such that each of them lies on a different line and different column.

2016 IFYM, Sozopol, 1

The numbers from 1 to $n$ are arranged in some way on a circle. What’s the smallest value of $n$, for which no matter how the numbers are arranged there exist ten consecutively increasing numbers $A_1<A_2<A_3…<A_{10}$ such that $A_1 A_2…A_{10}$ is a convex decagon?

2023 Dutch Mathematical Olympiad, 2

In a room there are $2023$ vases numbered from $1$ to $2023$. In each vase we want to put a note with a positive integer from $1$, $2$ $...$ , $2023$ on it. The numbers on the notes do [u]not[/u] necessarily have to be distinct. The following should now apply to each vase. Look at the note inside the vase, find the (not necessarily different) vase with the number written on the note, and look at the note inside this vase. Then the average of the numbers on the two notes must be exactly equal to the number of the first selected vase. For example, if we put a note with the number $5$ in vase $13$, then vase $5$ should contain a note with the number $21$ on it: after all, the average of $5$ and $ 21$ is $13$. Determine all possible ways to provide each vase with a note.

2013 Switzerland - Final Round, 6

There are two non-empty stacks of $n$ and $m$ coins on a table. The following operations are allowed: $\bullet$ The same number of coins are removed from both stacks. $\bullet$ The number of coins in a stack is tripled. For which pairs $(n, m)$ is it possible that after finitely many operations, no coins are more available?

2009 Tournament Of Towns, 2

Several points on the plane are given, no three of them lie on the same line. Some of these points are connected by line segments. Assume that any line that does not pass through any of these points intersects an even number of these segments. Prove that from each point exits an even number of the segments.

2015 Argentina National Olympiad, 4

An segment $S$ of length $50$ is covered by several segments of length $1$ , all of them contained in $S$. If any of these unit segments were removed, $S$ would no longer be completely covered. Find the maximum number of unit segments with this property. Clarification: Assume that the segments include their endpoints.

2020 Azerbaijan IMO TST, 2

You are given a set of $n$ blocks, each weighing at least $1$; their total weight is $2n$. Prove that for every real number $r$ with $0 \leq r \leq 2n-2$ you can choose a subset of the blocks whose total weight is at least $r$ but at most $r + 2$.

2019 PUMaC Combinatorics B, 7

A candy store has $100$ pieces of candy to give away. When you get to the store, there are five people in front of you, numbered from $1$ to $5$. The $i$th person in line considers the set of positive integers congruent to $i$ modulo $5$ which are at most the number of pieces of candy remaining. If this set is empty, then they take no candy. Otherwise they pick an element of this set and take that many pieces of candy. For example, the first person in line will pick an integer from the set $\{1,6,\dots,96\}$ and take that many pieces of candy. How many ways can the first five people take their share of candy so that after they are done there are at least $35$ pieces of candy remaining?

2003 All-Russian Olympiad Regional Round, 8.4

Prove that an arbitrary triangle can be cut into three polygons, one of which must be an obtuse triangle, so that they can then be folded into a rectangle. (Turning over parts is possible).

2012 Princeton University Math Competition, A1 / B2

If the probability that the sum of three distinct integers between $16$ and $30$ (inclusive) is even can be written as $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers, find $m + n$.

1966 All Russian Mathematical Olympiad, 083

$20$ numbers are written on the board $1, 2, ... ,20$. Two players are putting signs before the numbers in turn ($+$ or $-$). The first wants to obtain the minimal possible absolute value of the sum. What is the maximal value of the absolute value of the sum that can be achieved by the second player?

2009 Indonesia TST, 2

Find the formula to express the number of $ n\minus{}$series of letters which contain an even number of vocals (A,I,U,E,O).

2009 Baltic Way, 16

A [i]$n$-trønder walk[/i] is a walk starting at $(0, 0)$, ending at $(2n, 0)$ with no self intersection and not leaving the first quadrant, where every step is one of the vectors $(1, 1)$, $(1, -1)$ or $(-1, 1)$. Find the number of $n$-trønder walks.

1998 Baltic Way, 17

Let $n$ and $k$ be positive integers. There are $nk$ objects (of the same size) and $k$ boxes, each of which can hold $n$ objects. Each object is coloured in one of $k$ different colours. Show that the objects can be packed in the boxes so that each box holds objects of at most two colours.

1999 North Macedonia National Olympiad, 2

We are given $13$ apparently equal balls, all but one having the same weight (the remaining one has a different weight). Is it posible to determine the ball with the different weight in $3$ weighings?

2007 China Team Selection Test, 2

Given $ n$ points arbitrarily in the plane $ P_{1},P_{2},\ldots,P_{n},$ among them no three points are collinear. Each of $ P_{i}$ ($1\le i\le n$) is colored red or blue arbitrarily. Let $ S$ be the set of triangles having $ \{P_{1},P_{2},\ldots,P_{n}\}$ as vertices, and having the following property: for any two segments $ P_{i}P_{j}$ and $ P_{u}P_{v},$ the number of triangles having $ P_{i}P_{j}$ as side and the number of triangles having $ P_{u}P_{v}$ as side are the same in $ S.$ Find the least $ n$ such that in $ S$ there exist two triangles, the vertices of each triangle having the same color.

1995 IberoAmerican, 1

In a $m\times{n}$ grid are there are token. Every token [i]dominates [/i] every square on its same row ($\leftrightarrow$), its same column ($\updownarrow$), and diagonal ($\searrow\hspace{-4.45mm}\nwarrow$)(Note that the token does not \emph{dominate} the diagonal ($\nearrow\hspace{-4.45mm}\swarrow$), determine the lowest number of tokens that must be on the board to [i]dominate [/i] all the squares on the board.

2013 Israel National Olympiad, 5

A point in the plane is called [b]integral[/b] if both its $x$ and $y$ coordinates are integers. We are given a triangle whose vertices are integral. Its sides do not contain any other integral points. Inside the triangle, there are exactly 4 integral points. Must those 4 points lie on one line?