Found problems: 14842
2010 Junior Balkan Team Selection Tests - Romania, 1
We consider on a circle a finite number of real numbers with the sum strictly greater than $0$. Of all the sums that have as terms numbers on consecutive positions on the circle, let $S$ be the largest sum and $s$ the smallest sum. Show that $S + s> 0$.
Kvant 2024, M2785
A finite set $S{}$ of $n{}$ points is given in the plane. No three points lie on the same line. The number of non-self-intersecting closed $n{}$-link polylines with vertices at these points will be denoted by $f(S).$ Prove that
[list=a]
[*]$f(S)>0$ for all sets $S{};$
[*]$f(S)=1$ if and only if all the points of $S{}$ lie on the convex hull of $S{};$
[*]if $f(S)>1$ then $f(S)\geqslant n-1$, with equality if and only if one point of $S$ lies inside the convex hull;
[*]if exactly two points of $S{}$ lie inside the convex hull, then\[f(S)\geqslant\frac{(n-2)(n-3)}{2}.\]
[/list]Let $n\geqslant 3.$ Denote by $F(n)$ the largest possible value of the function $f(S)$ over all admissible sets $S{}$ of $n{}$ points. Prove that \[F(n)\geqslant3\cdot 2^{(n-8)/3}.\][i]Proposed by E. Bakaev and D. Magzhanov[/i]
2013 Chile National Olympiad, 6
Juan must pay $4$ bills. He goes to an ATM, but doesn't remember the amount of the bills. Just know that
a) Each account is a multiple of $1,000$ and is at least $4,000$.
b) The accounts total 2$00, 000$.
What is the least number of times Juan must use the ATM to make sure he can pay the bills with exact change without any excess money? The cashier has banknotes of $2, 000$, $5, 000$, $10, 000$, and $20,000$. Juan can decide how much money he asks the cashier each time, but you cannot decide how many bills of each type to give to the cashier.
1995 May Olympiad, 5
We have $105$ coins, among which we know that there are three fake ones. Authentic coins have all the same weight, which is greater than that of the false ones, which also have the same weight. Determine from can $26$ authentic coins be selected by weighing only two in one two pan balance.
2008 Turkey Team Selection Test, 6
There are $ n$ voters and $ m$ candidates. Every voter makes a certain arrangement list of all candidates (there is one person in every place $ 1,2,...m$) and votes for the first $ k$ people in his/her list. The candidates with most votes are selected and say them winners. A poll profile is all of this $ n$ lists.
If $ a$ is a candidate, $ R$ and $ R'$ are two poll profiles. $ R'$ is $ a\minus{}good$ for $ R$ if and only if for every voter; the people which in a worse position than $ a$ in $ R$ is also in a worse position than $ a$ in $ R'$. We say positive integer $ k$ is monotone if and only if for every $ R$ poll profile and every winner $ a$ for $ R$ poll profile is also a winner for all $ a\minus{}good$ $ R'$ poll profiles. Prove that $ k$ is monotone if and only if $ k>\frac{m(n\minus{}1)}{n}$.
2024-IMOC, C3
There are $n$ snails on the plane where the $i$ snail has $a_i$ attack and $d_i$ defense, where $a_i, d_i\in \mathbb{R}$ and each snail has a distinct attack and a distinct defense. We said a 4-tuple of subsets of snails $(S_1, S_2, S_3, S_4)$ is [b]balanced[/b] if $|S_1|+|S_3|$ is either $\lceil n/2\rceil$ or $\lfloor n/2\rfloor$ and there exist real numbers $A, D$ such that
\begin{align*}
S_1=\{i\ |\ a_i\geq A\text{ and } d_i\geq D, 1\leq i\leq n\}\\
S_2=\{i\ |\ a_i<A\text{ and } d_i\geq D, 1\leq i\leq n\}\\
S_3=\{i\ |\ a_i< A\text{ and } d_i< D, 1\leq i\leq n\}\\
S_4=\{i\ |\ a_i\geq A\text{ and } d_i< D, 1\leq i\leq n\}
\end{align*}
Find the largest integer $k$ such that there is always at least $k$ [b]balanced[/b] 4-tuples of subsets.
[i]Proposed by redshrimp[/i]
1967 Leningrad Math Olympiad, grade 7
[b]7.1[/b] Construct a trapezoid given four sides.
[b]7.2[/b] Prove that $$(1 + x + x^2 + ...+ x^{100})(1 + x^{102}) - 102x^{101} \ge 0 .$$
[b]7.3 [/b] In a quadrilateral $ABCD$, $M$ is the midpoint of AB, $N$ is the midpoint of $CD$. Lines $AD$ and BC intersect $MN$ at points $P$ and $Q$, respectively. Prove that if $\angle BQM = \angle APM$ , then $BC=AD$.
[img]https://cdn.artofproblemsolving.com/attachments/a/2/1c3cbc62ee570a823b5f3f8d046da9fbb4b0f2.png[/img]
[b]7.4 / 6.4[/b] Each of the eight given different natural numbers less than $16$. Prove that among their pairwise differences there is at least at least three are the same.
[b]7.5 / 8.4[/b] An entire arc of circle is drawn through the vertices $A$ and $C$ of the rectangle $ABCD$ lying inside the rectangle. Draw a line parallel to $AB$ intersecting $BC$ at point $P$, $AD$ at point $Q$, and the arc $AC$ at point $R$ so that the sum of the areas of the figures $AQR$ and $CPR$ is the smallest.
[img]https://cdn.artofproblemsolving.com/attachments/1/4/9b5a594f82a96d7eff750e15ca6801a5fc0bf1.png[/img]
[b]7.6 / 6.5 [/b]The distance AB is 100 km. From A and B , cyclists simultaneously ride towards each other at speeds of 20 km/h and 30 km/hour accordingly. Together with the first A, a fly flies out with speed 50 km/h, she flies until she meets the cyclist from B, after which she turns around and flies back until she meets the cyclist from A, after which turns around, etc. How many kilometers will the fly fly in the direction from A to B until the cyclists meet?
PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3988083_1967_leningrad_math_olympiad]here[/url].
2017 Benelux, 2
Let $n\geq 2$ be an integer. Alice and Bob play a game concerning a country made of $n$ islands. Exactly two of those $n$ islands have a factory. Initially there is no bridge in the country. Alice and Bob take turns in the following way. In each turn, the player must build a bridge between two different islands $I_1$ and $I_2$ such that:
$\bullet$ $I_1$ and $I_2$ are not already connected by a bridge.
$\bullet$ at least one of the two islands $I_1$ and $I_2$ is connected by a series of bridges to an island with a factory (or has a factory itself). (Indeed, access to a factory is needed for the construction.)
As soon as a player builds a bridge that makes it possible to go from one factory to the other, this player loses the game. (Indeed, it triggers an industrial battle between both factories.) If Alice starts, then determine (for each $n\geq 2$) who has a winning strategy.
([i]Note:[/i] It is allowed to construct a bridge passing above another bridge.)
2023 ELMO Shortlist, N3
Let \(a\), \(b\), and \(n\) be positive integers. A lemonade stand owns \(n\) cups, all of which are initially empty. The lemonade stand has a [i]filling machine[/i] and an [i]emptying machine[/i], which operate according to the following rules: [list] [*]If at any moment, \(a\) completely empty cups are available, the filling machine spends the next \(a\) minutes filling those \(a\) cups simultaneously and doing nothing else. [*]If at any moment, \(b\) completely full cups are available, the emptying machine spends the next \(b\) minutes emptying those \(b\) cups simultaneously and doing nothing else. [/list] Suppose that after a sufficiently long time has passed, both the filling machine and emptying machine work without pausing. Find, in terms of \(a\) and \(b\), the least possible value of \(n\).
[i]Proposed by Raymond Feng[/i]
2019 Purple Comet Problems, 20
Harold has $3$ red checkers and $3$ black checkers. Find the number of distinct ways that Harold can place these checkers in stacks. Two ways of stacking checkers are the same if each stack of the rst way matches a corresponding stack in the second way in both size and color arrangement. So, for example, the $3$ stack arrangement $RBR, BR, B$ is distinct from $RBR, RB, B$, but the $4$ stack arrangement $RB, BR, B, R$ is the same as $B, BR, R, RB$.
2018 Taiwan TST Round 3, 6
For any finite sets $X$ and $Y$ of positive integers, denote by $f_X(k)$ the $k^{\text{th}}$ smallest positive integer not in $X$, and let $$X*Y=X\cup \{ f_X(y):y\in Y\}.$$Let $A$ be a set of $a>0$ positive integers and let $B$ be a set of $b>0$ positive integers. Prove that if $A*B=B*A$, then $$\underbrace{A*(A*\cdots (A*(A*A))\cdots )}_{\text{ A appears $b$ times}}=\underbrace{B*(B*\cdots (B*(B*B))\cdots )}_{\text{ B appears $a$ times}}.$$
[i]Proposed by Alex Zhai, United States[/i]
2019 Estonia Team Selection Test, 8
Let $n$ be a given positive integer. Sisyphus performs a sequence of turns on a board consisting of $n + 1$ squares in a row, numbered $0$ to $n$ from left to right. Initially, $n$ stones are put into square $0$, and the other squares are empty. At every turn, Sisyphus chooses any nonempty square, say with $k$ stones, takes one of these stones and moves it to the right by at most $k$ squares (the stone should say within the board). Sisyphus' aim is to move all $n$ stones to square $n$.
Prove that Sisyphus cannot reach the aim in less than
\[ \left \lceil \frac{n}{1} \right \rceil + \left \lceil \frac{n}{2} \right \rceil + \left \lceil \frac{n}{3} \right \rceil + \dots + \left \lceil \frac{n}{n} \right \rceil \]
turns. (As usual, $\lceil x \rceil$ stands for the least integer not smaller than $x$. )
2012 Iran MO (3rd Round), 4
Prove that if $n$ is large enough, in every $n\times n$ square that a natural number is written on each one of its cells, one can find a subsquare from the main square such that the sum of the numbers is this subsquare is divisible by $1391$.
2007 Italy TST, 1
We have a complete graph with $n$ vertices. We have to color the vertices and the edges in a way such that: no two edges pointing to the same vertice are of the same color; a vertice and an edge pointing him are coloured in a different way. What is the minimum number of colors we need?
2001 Tournament Of Towns, 6
In a row are 23 boxes such that for $1\le k \le 23$, there is a box containing exactly $k$ balls. In one move, we can double the number of balls in any box by taking balls from another box which has more. Is it always possible to end up with exactly $k$ balls in the $k$-th box for $1\le k\le 23$?
2023 Brazil EGMO TST -wrong source, 3
There are $n$ cards. Max and Lewis play, alternately, the following game
Max starts the game, he removes exactly $1$ card, in each round the current player can remove any quantity of cards, from $1$ card to $t+1$ cards, which $t$ is the number of removed cards by the previous player, and the winner is the player who remove the last card. Determine all the possible values of $n$ such that Max has the winning strategy.
1989 Iran MO (2nd round), 1
In a sport competition, $m$ teams have participated. We know that each two teams have competed exactly one time and the result is winning a team and losing the other team (i.e. there is no equal result). Prove that there exists a team $x$ such that for each team $y,$ either $x$ wins $y$ or there exists a team $z$ for which $x$ wins $z$ and $z$ wins $y.$
[i][i.e. prove that in every tournament there exists a king.][/i]
2023 Azerbaijan BMO TST, 4
Find the largest positive integer $k{}$ for which there exists a convex polyhedron $\mathcal{P}$ with 2022 edges, which satisfies the following properties:
[list]
[*]The degrees of the vertices of $\mathcal{P}$ don’t differ by more than one, and
[*]It is possible to colour the edges of $\mathcal{P}$ with $k{}$ colours such that for every colour $c{}$, and every pair of vertices $(v_1, v_2)$ of $\mathcal{P}$, there is a monochromatic path between $v_1$ and $v_2$ in the colour $c{}$.
[/list]
[i]Viktor Simjanoski, Macedonia[/i]
2002 Polish MO Finals, 3
Three non-negative integers are written on a blackboard. A move is to replace two of the integers $k,m$ by $k+m$ and $|k-m|$. Determine whether we can always end with triplet which has at least two zeros
2001 Tuymaada Olympiad, 4
Unit square $ABCD$ is divided into $10^{12}$ smaller squares (not necessarily equal). Prove that the sum of perimeters of all the smaller squares having common points with diagonal $AC$ does not exceed 1500.
[i]Proposed by A. Kanel-Belov[/i]
2004 Harvard-MIT Mathematics Tournament, 1
There are $1000$ rooms in a row along a long corridor. Initially the first room contains $1000$ people and the remaining rooms are empty. Each minute, the following happens: for each room containing more than one person, someone in that room decides it is too crowded and moves to the next room. All these movements are simultaneous (so nobody moves more than once within a minute). After one hour, how many different rooms will have people in them?
ABMC Online Contests, 2023 Dec
[b]p1.[/b] Eric is playing Brawl Stars. If he starts playing at $11:10$ AM, and plays for $2$ hours total, then how many minutes past noon does he stop playing?
[b]p2.[/b] James is making a mosaic. He takes an equilateral triangle and connects the midpoints of its sides. He then takes the center triangle formed by the midsegments and connects the midpoints of its sides. In total, how many equilateral triangles are in James’ mosaic?
[b]p3.[/b] What is the greatest amount of intersections that $3$ circles and $3$ lines can have, given that they all lie on the same plane?
[b]p4.[/b] In the faraway land of Arkesia, there are two types of currencies: Silvers and Gold. Each Silver is worth $7$ dollars while each Gold is worth $17$ dollars. In Daniel’s wallet, the total dollar value of the Silvers is $1$ more than that of the Golds. What is the smallest total dollar value of all of the Silvers and Golds in his wallet?
[b]p5.[/b] A bishop is placed on a random square of a $8$-by-$8$ chessboard. On average, the bishop is able to move to $s$ other squares on the chessboard. Find $4s$.
Note: A bishop is a chess piece that can move diagonally in any direction, as far as it wants.
[b]p6.[/b] Andrew has a certain amount of coins. If he distributes them equally across his $9$ friends, he will have $7$ coins left. If he apportions his coins for each of his $15$ classmates, he will have $13$ coins to spare. If he splits the coins into $4$ boxes for safekeeping, he will have $2$ coins left over. What is the minimum number of coins Andrew could have?
[b]p7.[/b] A regular polygon $P$ has three times as many sides as another regular polygon $Q$. The interior angle of $P$ is $16^o$ greater than the interior angle of $Q$. Compute how many more diagonals $P$ has compared to $Q$.
[b]p8.[/b] In an certain airport, there are three ways to switch between the ground floor and second floor that are 30 meters apart: either stand on an escalator, run on an escalator, or climb the stairs. A family on vacation takes 65 seconds to climb up the stairs. A solo traveller late for their flight takes $25$ seconds to run upwards on the escalator. The amount of time (in seconds) it takes for someone to switch floors by standing on the escalator can be expressed as $\frac{u}{v}$ , where $u$ and $v$ are relatively prime. Find $u + v$.
(Assume everyone has the same running speed, and the speed of running on an escalator is the sum of the speeds of riding the escalator and running on the stairs.)
[b]p9.[/b] Avanish, being the studious child he is, is taking practice tests to improve his score. Avanish has a $60\%$ chance of passing a practice test. However, whenever Avanish passes a test, he becomes more confident and instead has a $70\%$ chance of passing his next immediate test. If Avanish takes $3$ practice tests in a row, the expected number of practice tests Avanish will pass can be expressed as $\frac{a}{b}$ , where $a$ and $b$ are relatively prime. Find $a + b$.
[b]p10.[/b] Triangle $\vartriangle ABC$ has sides $AB = 51$, $BC = 119$, and $AC = 136$. Point $C$ is reflected over line $\overline{AB}$ to create point $C'$. Next, point $B$ is reflected over line $\overline{AC'}$ to create point $B'$. If $[B'C'C]$ can be expressed in the form of $a\sqrt{b}$, where $b$ is not divisible by any perfect square besides $1$, find $a + b$.
[b]p11[/b]. Define the following infinite sequence $s$: $$s = \left\{\frac{1}{1},\frac{1}{1 + 3},\frac{1}{1 + 3 + 6}, ... ,\frac{1}{1 + 3 + 6 + ...+ t_k},...\right\},$$
where $t_k$ denotes the $k$th triangular number. The sum of the first $2024$ terms of $s$, denoted $S$, can be
expressed as $$S = 3 \left(\frac{1}{2}+\frac{1}{a}-\frac{1}{b}\right),$$ where $a$ and $b$ are positive integers. Find the minimal possible value of $a + b$.
[b]p12.[/b] Omar writes the numbers from $1$ to $1296$ on a whiteboard and then converts each of them into base $6$. Find the sum of all of the digits written on the whiteboard (in base $10$), including both the base $10$ and base $6$ numbers.
[b]p13.[/b] A mountain number is a number in a list that is greater than the number to its left and right. Let $N$ be the amount of lists created from the integers $1$ - $100$ such that each list only has one mountain number. $N$ can be expressed as
$$N = 2^a(2^b - c^2),$$
where $a$, $b$ and $c$ are positive integers and $c$ is not divisible by $2$. Find $a + b+c$.
(The numbers at the beginning or end of a list are not considered mountain numbers.)[hide]Original problem was voided because the original format of the answer didn't match the result's format. So I changed it in the wording, in order the problem to be correct[/hide]
[b]p14.[/b] A circle $\omega$ with center $O$ has a radius of $25$. Chords $\overline{AB}$ and $\overline{CD}$ are drawn in $\omega$ , intersecting at $X$ such that $\angle BXC = 60^o$ and $AX > BX$. Given that the shortest distance of $O$ with $\overline{AB}$ and $\overline{CD}$ is $7$ and $15$ respectively, the length of $BX$ can be expressed as $x - \frac{y}{\sqrt{z}}$ , where $x$, $y$, and $z$ are positive integers such that $z$ is not divisible by any perfect square. Find $x + y + z.$ [hide]two answers were considered correct according to configuration[/hide]
[b]p15.[/b] How many ways are there to split the first $10$ natural numbers into $n$ sets (with $n \ge 1$) such that all the numbers are used and each set has the same average?
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2014 Canada National Olympiad, 2
Let $m$ and $n$ be odd positive integers. Each square of an $m$ by $n$ board is coloured red or blue. A row is said to be red-dominated if there are more red squares than blue squares in the row. A column is said to be blue-dominated if there are more blue squares than red squares in the column. Determine the maximum possible value of the number of red-dominated rows plus the number of blue-dominated columns. Express your answer in terms of $m$ and $n$.
2014 Contests, 4
Let $n$ and $b$ be positive integers. We say $n$ is $b$-discerning if there exists a set consisting of $n$ different positive integers less than $b$ that has no two different subsets $U$ and $V$ such that the sum of all elements in $U$ equals the sum of all elements in $V$.
(a) Prove that $8$ is $100$-discerning.
(b) Prove that $9$ is not $100$-discerning.
[i]Senior Problems Committee of the Australian Mathematical Olympiad Committee[/i]
1997 Austrian-Polish Competition, 3
Numbers $\frac{49}{1}, \frac{49}{2}, ... , \frac{49}{97}$ are writen on a blackboard. Each time, we can replace two numbers (like $a, b$) with $2ab-a-b+1$. After $96$ times doing that prenominate action, one number will be left on the board. Find all the possible values fot that number.