Found problems: 14842
Kvant 2020, M2610
All vertices of a regular 100-gon are colored in 10 colors. Prove that there exist 4 vertices of the given 100-gon which are the vertices of a rectangle and which are colored in at most 2 colors.
2020 APMO, 3
Determine all positive integers $k$ for which there exist a positive integer $m$ and a set $S$ of positive integers such that any integer $n > m$ can be written as a sum of distinct elements of $S$ in exactly $k$ ways.
1977 All Soviet Union Mathematical Olympiad, 243
Seven elves are sitting at a round table. Each elf has a cup. Some cups are filled with some milk. Each elf in turn and clockwise divides all his milk between six other cups. After the seventh has done this, every cup was containing the initial amount of milk. How much milk did every cup contain, if there was three litres of milk total?
2000 Saint Petersburg Mathematical Olympiad, 9.4
On a Cartesian plane 101 planes are drawn and all points of intersection are labeled. Is it possible, that for every line, 50 of the points have positive coordinates and 50 of the points have negative coordinates
[I]Proposed by S. Ivanov[/i]
2012 European Mathematical Cup, 4
Olja writes down $n$ positive integers $a_1, a_2, \ldots, a_n$ smaller than $p_n$ where $p_n$ denotes the $n$-th prime number. Oleg can choose two (not necessarily different) numbers $x$ and $y$ and replace one of them with their product $xy$. If there are two equal numbers Oleg wins. Can Oleg guarantee a win?
[i]Proposed by Matko Ljulj.[/i]
2021 Tuymaada Olympiad, 7
A pile contains $2021^{2021}$ stones. In a move any pile can be divided into two piles so that the numbers of stones in them differ by a power
of $2$ with non-negative integer exponent. After some move it turned out that the number of stones in each pile is a power of $2$ with non-negative integer exponent. Prove that the number of moves performed was even.
1967 IMO Shortlist, 1
Given $m+n$ numbers: $a_i,$ $i = 1,2, \ldots, m,$ $b_j$, $j = 1,2, \ldots, n,$ determine the number of pairs $(a_i,b_j)$ for which $|i-j| \geq k,$ where $k$ is a non-negative integer.
1999 May Olympiad, 3
On each step of a ladder with $10$ steps there is a frog. Each of them can, in one jump, be placed on another step, but when it does, at the same time, another frog will jump the same number of steps in the opposite direction: one goes up and another goes down. Will the frogs manage to get all together on the same step?
1990 Vietnam National Olympiad, 2
At least $ n - 1$ numbers are removed from the set $\{1, 2, \ldots, 2n - 1\}$ according to the following rules:
(i) If $ a$ is removed, so is $ 2a$;
(ii) If $ a$ and $ b$ are removed, so is $ a \plus{} b$.
Find the way of removing numbers such that the sum of the remaining numbers is maximum possible.
2008 Argentina Iberoamerican TST, 3
The plane is divided into regions by $ n \ge 3$ lines, no two of which are parallel, and no three of which are concurrent. Some regions are coloured , in such a way that no two coloured regions share a common segment or half-line of their borders. Prove that the number of coloured regions is at most $ \frac{n(n\plus{}1)}{3}$
1995 Miklós Schweitzer, 6
Prove that every finite triangle-free graph can be embedded as an induced subgraph in a finite triangle-free graph of diameter 2.
2019 HMNT, 4
Two players play a game, starting with a pile of $N$ tokens. On each player’s turn, they must remove $2^n$ tokens from the pile for some nonnegative integer $n$. If a player cannot make a move, they lose. For how many $N$ between $ 1$ and $2019$ (inclusive) does the first player have a winning strategy?
1969 Poland - Second Round, 6
Prove that every polyhedron has at least two faces with the same number of sides.
2004 ITAMO, 4
Antonio and Bernardo play the following game. They are given two piles of chips, one with $m$ and the other with $n$ chips. Antonio starts, and thereafter they make in turn one of the following moves:
(i) take a chip from one pile;
(ii) take a chip from each of the piles;
(ii) remove a chip from one of the piles and put it onto the other.
Who cannot make any more moves, loses. Decide, as a function of $m$ and $n$ if one of the players has a winning strategy, and in the case of the affirmative answer describe that strategy.
2011 Kosovo National Mathematical Olympiad, 5
Let $n>1$ be an integer and $S_n$ the set of all permutations $\pi : \{1,2,\cdots,n \} \to \{1,2,\cdots,n \}$ where $\pi$ is bijective function. For every permutation $\pi \in S_n$ we define:
\[ F(\pi)= \sum_{k=1}^n |k-\pi(k)| \ \ \text{and} \ \ M_{n}=\frac{1}{n!}\sum_{\pi \in S_n} F(\pi) \]
where $M_n$ is taken with all permutations $\pi \in S_n$. Calculate the sum $M_n$.
2010 Slovenia National Olympiad, 5
Ten pirates find a chest filled with golden and silver coins. There are twice as many silver coins in the chest as there are golden. They divide the golden coins in such a way that the difference of the numbers of coins given to any two of the pirates is not divisible by $10.$ Prove that they cannot divide the silver coins in the same way.
2011 Brazil Team Selection Test, 1
Find the smallest positive integer $n$ such that it is possible to paint each of the $64$ squares of an $8 \times 8$ board of one of $n$ colors so that any four squares that form an $L$ as in the following figure (or congruent figures obtained through rotations and/or reflections) have different colors.
[img]https://cdn.artofproblemsolving.com/attachments/a/2/c8049b1be8f37657c058949e11faf041856da4.png[/img]
EMCC Team Rounds, 2020
[b]p1.[/b] The number $2020$ is very special: the sum of its digits is equal to the product of its nonzero digits. How many such four digit numbers are there? (Numbers with only one nonzero digit, like $3000$, also count)
[b]p2.[/b] A locker has a combination which is a sequence of three integers between $ 0$ and $49$, inclusive. It is known that all of the numbers in the combination are even. Let the total of a lock combination be the sum of the three numbers. Given that the product of the numbers in the combination is $12160$, what is the sum of all possible totals of the locker combination?
[b]p3.[/b] Given points $A = (0, 0)$ and $B = (0, 1)$ in the plane, the set of all points P in the plane such that triangle $ABP$ is isosceles partitions the plane into $k$ regions. The sum of the areas of those regions that are bounded is $s$. Find $ks$.
[b]p4.[/b] Three families sit down around a circular table, each person choosing their seat at random. One family has two members, while the other two families have three members. What is the probability that every person sits next to at least one person from a different family?
[b]p5.[/b] Jacob and Alexander are walking up an escalator in the airport. Jacob walks twice as fast as Alexander, who takes $18$ steps to arrive at the top. Jacob, however, takes $27$ steps to arrive at the top. How many of the upward moving escalator steps are visible at any point in time?
[b]p6.[/b] Points $A, B, C, D, E$ lie in that order on a circle such that $AB = BC = 5$, $CD = DE = 8$, and $\angle BCD = 150^o$ . Let $AD$ and $BE$ intersect at $P$. Find the area of quadrilateral $PBCD$.
[b]p7.[/b] Ivan has a triangle of integers with one number in the first row, two numbers in the second row, and continues up to eight numbers in the eighth row. He starts with the first $8$ primes, $2$ through $19$, in the bottom row. Each subsequent row is filled in by writing the least common multiple of two adjacent numbers in the row directly below. For example, the second last row starts with$ 6, 15, 35$, etc. Let P be the product of all the numbers in this triangle. Suppose that P is a multiple of $a/b$, where $a$ and $b$ are positive integers and $a > 1$. Given that $b$ is maximized, and for this value of $b, a$ is also maximized, find $a + b$.
[b]p8.[/b] Let $ABCD$ be a cyclic quadrilateral. Given that triangle $ABD$ is equilateral, $\angle CBD = 15^o$, and $AC = 1$, what is the area of $ABCD$?
[b]p9.[/b] Let $S$ be the set of all integers greater than $ 1$. The function f is defined on $S$ and each value of $f$ is in $S$. Given that $f$ is nondecreasing and $f(f(x)) = 2x$ for all $x$ in $S$, find $f(100)$.
[b]p10.[/b] An [i]origin-symmetric[/i] parallelogram $P$ (that is, if $(x, y)$ is in $P$, then so is $(-x, -y)$) lies in the coordinate plane. It is given that P has two horizontal sides, with a distance of $2020$ between them, and that there is no point with integer coordinates except the origin inside $P$. Also, $P$ has the maximum possible area satisfying the above conditions. The coordinates of the four vertices of P are $(a, 1010)$, $(b, 1010)$, $(-a, -1010)$, $(-b, -1010)$, where a, b are positive real numbers with $a < b$. What is $b$?
[b]p11.[/b] What is the remainder when $5^{200} + 5^{50} + 2$ is divided by $(5 + 1)(5^2 + 1)(5^4 + 1)$?
[b]p12.[/b] Let $f(n) = n^2 - 4096n - 2045$. What is the remainder when $f(f(f(... f(2046)...)))$ is divided by $2047$, where the function $f$ is applied $47$ times?
[b]p13.[/b] What is the largest possible area of a triangle that lies completely within a $97$-dimensional hypercube of side length $1$, where its vertices are three of the vertices of the hypercube?
[b]p14.[/b] Let $N = \left \lfloor \frac{1}{61} \right \rfloor + \left \lfloor\frac{3}{61} \right \rfloor+\left \lfloor \frac{3^2}{61} \right \rfloor+... +\left \lfloor\frac{3^{2019}}{61} \right \rfloor$. Given that $122N$ can be expressed as $3^a - b$, where $a, b$ are positive integers and $a$ is as large as possible, find $a + b$.
Note: $\lfloor x \rfloor$ is defined as the greatest integer less than or equal to $x$.
[b]p15.[/b] Among all ordered triples of integers $(x, y, z)$ that satisfy $x + y + z = 8$ and $x^3 + y^3 + z^3 = 134$, what is the maximum possible value of $|x| + |y| + |z|$?
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2012 Vietnam Team Selection Test, 2
Consider a $m\times n$ rectangular grid with $m$ rows and $n$ columns. There are water fountains on some of the squares. A water fountain can spray water onto any of it's adjacent squares, or a square in the same column such that there is exactly one square between them. Find the minimum number of fountains such that each square can be sprayed in the case that
a) $m=4$;
b) $m=3$.
2019 Iran Team Selection Test, 5
A sub-graph of a complete graph with $n$ vertices is chosen such that the number of its edges is a multiple of $3$ and degree of each vertex is an even number. Prove that we can assign a weight to each triangle of the graph such that for each edge of the chosen sub-graph, the sum of the weight of the triangles that contain that edge equals one, and for each edge that is not in the sub-graph, this sum equals zero.
[i]Proposed by Morteza Saghafian[/i]
2010 Contests, 3
On each day, more than half of the inhabitants of Évora eats [i]sericaia[/i] as dessert. Show that there is a group of 10 inhabitants of Évora such that, on each of the last 2010 days, at least one of the inhabitants ate [i]sericaia[/i] as dessert.
Russian TST 2018, P2
Let $\mathcal{F}$ be a finite family of subsets of some set $X{}$. It is known that for any two elements $x,y\in X$ there exists a permutation $\pi$ of the set $X$ such that $\pi(x)=y$, and for any $A\in\mathcal{F}$ \[\pi(A):=\{\pi(a):a\in A\}\in\mathcal{F}.\]A bear and crocodile play a game. At a move, a player paints one or more elements of the set $X$ in his own color: brown for the bear, green for the crocodile. The first player to fully paint one of the sets in $\mathcal{F}$ in his own color loses. If this does not happen and all the elements of $X$ have been painted, it is a draw. The bear goes first. Prove that he doesn't have a winning strategy.
2019 Latvia Baltic Way TST, 7
Two sequences $b_i$, $c_i$, $0 \le i \le 100$ contain positive integers, except $c_0=0$ and $b_{100}=0$.
Some towns in Graphland are connected with roads, and each road connects exactly two towns and is precisely $1$ km long. Towns, which are connected by a road or a sequence of roads, are called [i]neighbours[/i]. The length of the shortest path between two towns $X$ and $Y$ is denoted as [i]distance[/i]. It is known that the greatest [i]distance[/i] between two towns in Graphland is $100$ km. Also the following property holds for every pair $X$ and $Y$ of towns (not necessarily distinct): if the [i]distance[/i] between $X$ and $Y$ is exactly $k$ km, then $Y$ has exactly $b_k$ [i]neighbours[/i] that are at the [i]distance[/i] $k+1$ from $X$, and exactly $c_k$ [i]neighbours[/i] that are at the [i]distance[/i] $k-1$ from $X$.
Prove that $$\frac{b_0b_1 \cdot \cdot \cdot b_{99}}{c_1c_2 \cdot \cdot \cdot c_{100}}$$ is a positive integer.
2017 Federal Competition For Advanced Students, P2, 2
A necklace contains $2016$ pearls, each of which has one of the colours black, green or blue.
In each step we replace simultaneously each pearl with a new pearl, where the colour of the new pearl is determined as follows: If the two original neighbours were of the same colour, the new pearl has their colour. If the neighbours had two different colours, the new pearl has the third colour.
(a) Is there such a necklace that can be transformed with such steps to a necklace of blue pearls if half of the pearls were black and half of the pearls were green at the start?
(b) Is there such a necklace that can be transformed with such steps to a necklace of blue pearls if thousand of the pearls were black at the start and the rest green?
(c) Is it possible to transform a necklace that contains exactly two adjacent black pearls and $2014$ blue pearls to a necklace that contains one green pearl and $2015$ blue pearls?
Proposed byTheresia Eisenkölbl
2013 Princeton University Math Competition, 10
On a plane, there are $7$ seats. Each is assigned to a passenger. The passengers walk on the plane one at a time. The first passenger sits in the wrong seat (someone else's). For all the following people, they either sit in their assigned seat, or if it is full, randomly pick another. You are the last person to board the plane. What is the probability that you sit in your own seat?