This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 80

2015 Caucasus Mathematical Olympiad, 3

The workers laid a floor of size $n\times n$ ($10 <n <20$) with two types of tiles: $2 \times 2$ and $5\times 1$. It turned out that they were able to completely lay the floor so that the same number of tiles of each type was used. For which $n$ could this happen? (You can’t cut tiles and also put them on top of each other.)

2013 Peru MO (ONEM), 4

The next board is completely covered with dominoes in an arbitrary manner. [img]https://cdn.artofproblemsolving.com/attachments/8/9/b4b791e55091e721c8d6040a65ae6ba788067c.png[/img] a) Prove that we can paint $21$ dominoes in such a way that there are not two dominoes painted forming a $S$-tetramino. b) What is the largest positive integer $k$ for which it is always possible to paint $k$ dominoes (without matter how the board is filled) in such a way that there are not two painted dominoes forming a $S$-tetramine? Clarification: A domino is a $1 \times 2$ or $2 \times 1$ rectangle; the $S$-tetraminos are the figures of the following types: [img]https://cdn.artofproblemsolving.com/attachments/d/f/8480306382d6b87ddb8b2a7ca96c91ee45bc6e.png[/img]

1969 Spain Mathematical Olympiad, 5

Show that a convex polygon with more than four sides cannot be decomposed into two others, both similar to the first (directly or inversely), by means of a single rectilinear cut. Reasonably specify which are the quadrilaterals and triangles that admit a decomposition of this type.

1990 Austrian-Polish Competition, 8

We are given a supply of $a \times b$ tiles with $a$ and $b$ distinct positive integers. The tiles are to be used to tile a $28 \times 48$ rectangle. Find $a, b$ such that the tile has the smallest possible area and there is only one possible tiling. (If there are two distinct tilings, one of which is a reflection of the other, then we treat that as more than one possible tiling. Similarly for other symmetries.) Find $a, b$ such that the tile has the largest possible area and there is more than one possible tiling.

2014 Switzerland - Final Round, 4

The checkered plane (infinitely large house paper) is given. For which pairs (a,, b) one can color each of the squares with one of $a \cdot b$ colors, so that each rectangle of size $ a \times b$ or $b \times a$, placed appropriately in the checkered plane, always contains a unit square with each color ?

I Soros Olympiad 1994-95 (Rus + Ukr), 10.3

Given a square board with dimensions $1 995 \times 1 995$. These cells are painted with black and white paints in checkerboard order like this. that the corner cells are black. Two black and one white cells were randomly cut out of the board. Prove that the rest of the board can be divided into rectangles of size $1 \times 2$ .

2015 Caucasus Mathematical Olympiad, 3

The workers laid a floor of size $n \times n$ with tiles of two types: $2 \times 2$ and $3 \times 1$. It turned out that they were able to completely lay the floor in such a way that the same number of tiles of each type was used. Under what conditions could this happen? (You can’t cut tiles and also put them on top of each other.)

1999 All-Russian Olympiad Regional Round, 9.5

All cells of the checkered plane are painted in $5$ colors so that in any figure of the species [img]https://cdn.artofproblemsolving.com/attachments/f/f/49b8d6db20a7e9cca7420e4b51112656e37e81.png[/img] all colors are different. Prove that in any figure of the species $ \begin{tabular}{ | l | c| c | c | r| } \hline & & & &\\ \hline \end{tabular}$, all colors are different..

2022 Austrian MO Beginners' Competition, 2

You are given a rectangular playing field of size $13 \times 2$ and any number of dominoes of sizes $2\times 1$ and $3\times 1$. The playing field should be seamless with such dominoes and without overlapping, with no domino protruding beyond the playing field may. Furthermore, all dominoes must be aligned in the same way, i. e. their long sides must be parallel to each other. How many such coverings are possible? (Walther Janous)

2020 Dutch IMO TST, 4

Given are two positive integers $k$ and $n$ with $k \le n \le 2k - 1$. Julian has a large stack of rectangular $k \times 1$ tiles. Merlin calls a positive integer $m$ and receives $m$ tiles from Julian to place on an $n \times n$ board. Julian first writes on every tile whether it should be a horizontal or a vertical tile. Tiles may be used the board should not overlap or protrude. What is the largest number $m$ that Merlin can call if he wants to make sure that he has all tiles according to the rule of Julian can put on the plate?

1996 Swedish Mathematical Competition, 6

A rectangle is tiled with rectangles of size $6\times 1$. Prove that one of its side lengths is divisible by $6$.

2017 Junior Balkan Team Selection Tests - Romania, 4

Two right isosceles triangles of legs equal to $1$ are glued together to form either an isosceles triangle - called [i]t-shape[/i] - of leg $\sqrt2$, or a parallelogram - called [i]p-shape[/i] - of sides $1$ and $\sqrt2$. Find all integers $m$ and $n, m, n \ge 2$, such that a rectangle $m \times n$ can be tilled with t-shapes and p-shapes.

2005 Estonia National Olympiad, 5

A $5\times 5$ board is covered by eight hooks (a three unit square figure, shown in the picture) so that one unit square remains free. Determine all squares of the board that can remain free after such covering. [img]https://cdn.artofproblemsolving.com/attachments/6/8/a8c4e47ba137b904bd28c01c1d2cb765824e6a.png[/img]

2009 Peru MO (ONEM), 4

Let $ n$ be a positive integer. A $4\times n$ rectangular grid is divided in$ 2\times 1$ or $1\times 2$ rectangles (as if it were completely covered with tiles of domino, no overlaps or gaps). Then all the grid points which are vertices of one of the $2\times 1$ or $1\times 2$ rectangles, are painted red. What is the least amount of red points you can get?

2004 Switzerland - Final Round, 10

Let $n > 1$ be an odd natural number. The squares of an $n \times n$ chessboard are alternately colored white and black so that the four corner squares are black. An $L$-triomino is an $L$-shaped piece that covers exactly three squares of the board. For which values ​​of $n$ is it possible to cover all black squares with $L$-triominoes, so that no two $L$-triominos overlap? For these values ​​of $n$ determine the smallest possible number of $L$-triominoes that are necessary for this.

2010 Belarus Team Selection Test, 6.3

A $50 \times 50$ square board is tiled by the tetrominoes of the following three types: [img]https://cdn.artofproblemsolving.com/attachments/2/9/62c0bce6356ea3edd8a2ebfe0269559b7527f1.png[/img] Find the greatest and the smallest possible number of $L$ -shaped tetrominoes In the tiling. (Folklore)

2006 Singapore Junior Math Olympiad, 5

You have a large number of congruent equilateral triangular tiles on a table and you want to fit $n$ of them together to make a convex equiangular hexagon (i.e. one whose interior angles are $120^o$) . Obviously, $n$ cannot be any positive integer. The first three feasible $n$ are $6, 10$ and $13$. Show that $12$ is not feasible but $14$ is.

1996 Tournament Of Towns, (505) 2

For what positive integers $n$ is it possible to tile an equilateral triangle of side $n$ with trapezoids each of which has sides $1, 1, 1, 2$? (NB Vassiliev)

2009 Switzerland - Final Round, 8

Given is a floor plan composed of $n$ unit squares. Albert and Berta want to cover this floor with tiles, with all tiles having the shape of a $1\times 2$ domino or a $T$-tetromino. Albert only has tiles from one color, while Berta has two-color dominoes and tetrominoes available in four colors. Albert can use this floor plan in $a$ ways to cover tiles, Berta in $ b$ ways. Assuming that $a \ne 0$, determine the ratio $b/a$.

2022 Federal Competition For Advanced Students, P2, 6

(a) Prove that a square with sides $1000$ divided into $31$ squares tiles, at least one of which has a side length less than $1$. (b) Show that a corresponding decomposition into $30$ squares is also possible. [i](Walther Janous)[/i]

2019 Centroamerican and Caribbean Math Olympiad, 6

A [i]triminó[/i] is a rectangular tile of $1\times 3$. Is it possible to cover a $8\times8$ chessboard using $21$ triminós, in such a way there remains exactly one $1\times 1$ square without covering? In case the answer is in the affirmative, determine all the possible locations of such a unit square in the chessboard.

Novosibirsk Oral Geo Oly VII, 2023.1

Let's call a corner the figure that is obtained by removing one cell from a $2 \times 2$ square. Cut the $6 \times 6$ square into corners so that no two of them form a $2 \times 3$ or $3 \times 2$ rectangle together.

2002 May Olympiad, 5

Find the maximum number of $3 \times 5\times 7$ boxes that can be placed inside a $11\times 35\times 39$ box. For the number found, indicate how you would place that number of boxes inside the box.

2002 Junior Balkan Team Selection Tests - Romania, 3

Consider a $1 \times n$ rectangle and some tiles of size $1 \times 1$ of four different colours. The rectangle is tiled in such a way that no two neighboring square tiles have the same colour. a) Find the number of distinct symmetrical tilings. b) Find the number of tilings such that any consecutive square tiles have distinct colours.

2007 Cuba MO, 1

Pieces are placed in some squares of an $8 \times 8$ board sothat: a) There is at least one token in any rectangle with sides $2 \times 1$ or $1\times 2$. b) There are at least two neighboring pieces in any rectangle with sides $7\times 1$ or $1\times 7$. Find the smallest number of tokens that can be taken to fulfill with both conditions.