This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2021 Taiwan TST Round 1, C

Let $n$ be a positive integer. Find the number of permutations $a_1$, $a_2$, $\dots a_n$ of the sequence $1$, $2$, $\dots$ , $n$ satisfying $$a_1 \le 2a_2\le 3a_3 \le \dots \le na_n$$. Proposed by United Kingdom

2001 All-Russian Olympiad Regional Round, 10.7

We call a set of cells on a checkered plane [i]rook-connected[/i] if from any of its cells one can get to any other by moving along the cells of this set by moving the rook (the rook is allowed to fly through fields that do not belong to our set). Prove that a [i]rook-connected[/i] set of $100$ cells can be divided into pairs of cells, lying in one row or in one column.

2015 Abels Math Contest (Norwegian MO) Final, 2a

King Arthur is placing $a + b + c$ knights around a table. $a$ knights are dressed in red, $b$ knights are dressed in brown, and $c$ knights are dressed in orange. Arthur wishes to arrange the knights so that no knight is seated next to someone dressed in the same colour as himself. Show that this is possible if, and only if, there exists a triangle whose sides have lengths $a +\frac12, b +\frac12$, and $c +\frac12$

2009 All-Russian Olympiad Regional Round, 10.3

Kostya had two sets of $17$ coins: in one set all the coins were real, and in the other set there were exactly $5$ fakes (all the coins look the same; all real coins weigh the same, all fake coins also weigh the same, but it is unknown lighter or heavier than real ones). Kostya gave away one of the sets friend, and subsequently forgot which of the two sets had stayed. With the help of two weighings, can Kostya on a cup scale without weights, find out which of the two did he give away the sets?

2013 BMT Spring, 2

If I roll three fair $4$-sided dice, what is the probability that the sum of the resulting numbers is relatively prime to the product of the resulting numbers?

1995 China Team Selection Test, 1

Let $S = \lbrace A = (a_1, \ldots, a_s) \mid a_i = 0$ or $1, i = 1, \ldots, 8 \rbrace$. For any 2 elements of $S$, $A = \lbrace a_1, \ldots, a_8\rbrace$ and $B = \lbrace b_1, \ldots, b_8\rbrace$. Let $d(A,B) = \sum_{i=1}{8} |a_i - b_i|$. Call $d(A,B)$ the distance between $A$ and $B$. At most how many elements can $S$ have such that the distance between any 2 sets is at least 5?

2021 LMT Fall, 8

Three distinct positive integers are chosen at random from $\{1,2,3...,12\}$. The probability that no two elements of the set have an absolute difference less than or equal to $2$ can be written as $\frac{a}{b}$ where $a$ and $b$ are relatively prime positive integers. Find $a +b$.

2016 Canadian Mathematical Olympiad Qualification, 5

Consider a convex polygon $P$ with $n$ sides and perimeter $P_0$. Let the polygon $Q$, whose vertices are the midpoints of the sides of $P$, have perimeter $P_1$. Prove that $P_1 \geq \frac{P_0}{2}$.

2023 CMWMC, R8

[b]p22.[/b] Find the unique ordered pair $(m, n)$ of positive integers such that $x = \sqrt[3]{m} -\sqrt[3]{n}$ satisfies $x^6 + 4x^3 - 36x^2 + 4 = 0$. [b]p23.[/b] Jenny plays with a die by placing it flat on the ground and rolling it along any edge for each step. Initially the face with $1$ pip is face up. How many ways are there to roll the dice for $6$ steps and end with the $1$ face up again? [b]p24.[/b] There exists a unique positive five-digit integer with all odd digits that is divisible by $5^5$. Find this integer. PS. You should use hide for answers.

2010 Contests, 3

In an exam every question is solved by exactly four students, every pair of questions is solved by exactly one student, and none of the students solved all of the questions. Find the maximum possible number of questions in this exam.

2020 SAFEST Olympiad, 1

You are given a set of $n$ blocks, each weighing at least $1$; their total weight is $2n$. Prove that for every real number $r$ with $0 \leq r \leq 2n-2$ you can choose a subset of the blocks whose total weight is at least $r$ but at most $r + 2$.

2004 Cuba MO, 1

A square is divided into $25$ small squares, equal to each other, drawing lines parallel to the sides of the square. Some are drawn diagonals of small squares so that there are no two diagonals with a common point. What is the maximum number of diagonals that can be traced?

2015 Saudi Arabia IMO TST, 2

Hamza and Majid play a game on a horizontal $3 \times 2015$ white board. They alternate turns, with Hamza going first. A legal move for Hamza consists of painting three unit squares forming a horizontal $1 \times 3$ rectangle. A legal move for Majid consists of painting three unit squares forming a vertical $3\times 1$ rectangle. No one of the two players is allowed to repaint already painted squares. The last player to make a legal move wins. Which of the two players, Hamza or Majid, can guarantee a win no matter what strategy his opponent chooses and what is his strategy to guarantee a win? Lê Anh Vinh

1989 IMO Longlists, 18

There are some boys and girls sitting in an $ n \times n$ quadratic array. We know the number of girls in every column and row and every line parallel to the diagonals of the array. For which $ n$ is this information sufficient to determine the exact positions of the girls in the array? For which seats can we say for sure that a girl sits there or not?

2001 China Team Selection Test, 2

A badminton club consists of $2n$ members who are n couples. The club plans to arrange a round of mixed doubles matches where spouses neither play together nor against each other. Requirements are: $\cdot$ Each pair of members of the same gender meets exactly once as opponents in a mixed doubles match. $\cdot$ Any two members of the opposite gender who are not spouses meet exactly once as partners and also as opponents in a mixed doubles match. Given that $(n,6)=1$, can you arrange a round of mixed doubles matches that meets the above specifications and requirements?

2024/2025 TOURNAMENT OF TOWNS, P2

Pete puts 100 stones in a row: black one, white one, black one, white one, ..., black one, white one. In a single move either Pete chooses two black stones with only white stones between them, and repaints all these white stones in black, or Pete chooses two white stones with only black stones between them, and repaints all these black stones in white. Can Pete with a sequence of moves described above obtain a row of 50 black stones followed by 50 white stones? Egor Bakaev

2021 Israel TST, 3

A game is played on a $n \times n$ chessboard. In the beginning Bars the cat occupies any cell according to his choice. The $d$ sparrows land on certain cells according to their choice (several sparrows may land in the same cell). Bars and the sparrows play in turns. In each turn of Bars, he moves to a cell adjacent by a side or a vertex (like a king in chess). In each turn of the sparrows, precisely one of the sparrows flies from its current cell to any other cell of his choice. The goal of Bars is to get to a cell containing a sparrow. Can Bars achieve his goal a) if $d=\lfloor \frac{3\cdot n^2}{25}\rfloor$, assuming $n$ is large enough? b) if $d=\lfloor \frac{3\cdot n^2}{19}\rfloor$, assuming $n$ is large enough? c) if $d=\lfloor \frac{3\cdot n^2}{14}\rfloor$, assuming $n$ is large enough?

2021 Science ON all problems, 2

Let $n\ge 3$ be an integer. Let $s(n)$ be the number of (ordered) pairs $(a;b)$ consisting of positive integers $a,b$ from the set $\{1,2,\dots ,n\}$ which satisfy $\gcd (a,b,n)=1$. Prove that $s(n)$ is divisible by $4$ for all $n\ge 3$. [i] (Vlad Robu) [/i]

2021 Romanian Master of Mathematics, 4

Consider an integer \(n \ge 2\) and write the numbers \(1, 2, \ldots, n\) down on a board. A move consists in erasing any two numbers \(a\) and \(b\), then writing down the numbers \(a+b\) and \(\vert a-b \vert\) on the board, and then removing repetitions (e.g., if the board contained the numbers \(2, 5, 7, 8\), then one could choose the numbers \(a = 5\) and \(b = 7\), obtaining the board with numbers \(2, 8, 12\)). For all integers \(n \ge 2\), determine whether it is possible to be left with exactly two numbers on the board after a finite number of moves. [i]Proposed by China[/i]

2018 Saudi Arabia IMO TST, 2

Let $n$ be an even positive integer. We fill in a number on each cell of a rectangle table of $n$ columns and multiple rows as following: i. Each row is assigned to some positive integer $a$ and its cells are filled by $0$ or $a$ (in any order); ii. The sum of all numbers in each row is $n$. Note that we cannot add any more row to the table such that the conditions (i) and (ii) still hold. Prove that if the number of $0$’s on the table is odd then the maximum odd number on the table is a perfect square.

2012 India IMO Training Camp, 3

In a $2\times n$ array we have positive reals s.t. the sum of the numbers in each of the $n$ columns is $1$. Show that we can select a number in each column s.t. the sum of the selected numbers in each row is at most $\frac{n+1}4$.

2021 May Olympiad, 2

In a $2 \times 8$ squared board, you want to color each square red or blue in such a way that on each $2 \times 2$ sub-board there are at least $3$ boxes painted blue. In how many ways can this coloring be done? Note. A $2 \times 2$ board is a square made up of $4$ squares that have a common vertex.

2020 Durer Math Competition Finals, 6

(Game) At the beginning of the game the organisers place $4$ piles of paper disks onto the table. The player who is in turn takes away a pile, then divides one of the remaining piles into two nonempty piles. Whoever is unable to move, loses. [i]Defeat the organisers in this game twice in a row! A starting position will be given and then you can decide whether you want to go first or second.[/i]

2013 ELMO Shortlist, 1

Let $n\ge2$ be a positive integer. The numbers $1,2,..., n^2$ are consecutively placed into squares of an $n\times n$, so the first row contains $1,2,...,n$ from left to right, the second row contains $n+1,n+2,...,2n$ from left to right, and so on. The [i]magic square value[/i] of a grid is defined to be the number of rows, columns, and main diagonals whose elements have an average value of $\frac{n^2 + 1}{2}$. Show that the magic-square value of the grid stays constant under the following two operations: (1) a permutation of the rows; and (2) a permutation of the columns. (The operations can be used multiple times, and in any order.) [i]Proposed by Ray Li[/i]

1998 All-Russian Olympiad, 7

Let n be an integer at least 4. In a convex n-gon, there is NO four vertices lie on a same circle. A circle is called circumscribed if it passes through 3 vertices of the n-gon and contains all other vertices. A circumscribed circle is called boundary if it passes through 3 consecutive vertices, a circumscribed circle is called inner if it passes through 3 pairwise non-consecutive points. Prove the number of boundary circles is 2 more than the number of inner circles.