Found problems: 14842
2010 ELMO Shortlist, 2
For a positive integer $n$, let $s(n)$ be the number of ways that $n$ can be written as the sum of strictly increasing perfect $2010^{\text{th}}$ powers. For instance, $s(2) = 0$ and $s(1^{2010} + 2^{2010}) = 1$. Show that for every real number $x$, there exists an integer $N$ such that for all $n > N$,
\[\frac{\max_{1 \leq i \leq n} s(i)}{n} > x.\]
[i]Alex Zhu.[/i]
2023 Durer Math Competition (First Round), 3
Pythagoras drew some points in the plane and and connected some of these with segments. Now Tortillagoras wants to write a positive integer next to every point, such that one number divides another number if and only if these numbers are written next to points that Pythagoras has connected.Can Tortillagoras do this for the following drawings?
[i]In part b), vertices in the same row or column but not adjacent are not connected.[/i]
[img]https://cdn.artofproblemsolving.com/attachments/1/e/7356e39e44e45e3263275292af3719595e2dd2.png[/img]
1998 Denmark MO - Mohr Contest, 5
A neat fruit arrangement on a large round dish is edged with strawberries. Between $100$ and $200$ berries are used for this border. A deliciously hungry child eats first one of the strawberries and then starts going round and round the dish, she eats strawberries in the following way: When she has eaten a berry, she leaves it next lie, then she eats the next, leaves the next, etc. Thus she continues until there is only one strawberry left. This berry is the one that was lying right after the very first thing she ate. How many berries were there originally?
2024 Bulgarian Winter Tournament, 12.3
Let $n$ be a positive integer and let $\mathcal{A}$ be a family of non-empty subsets of $\{1, 2, \ldots, n \}$ such that if $A \in \mathcal{A}$ and $A$ is subset of a set $B\subseteq \{1, 2, \ldots, n\}$, then $B$ is also in $\mathcal{A}$. Show that the function $$f(x):=\sum_{A \in \mathcal{A}} x^{|A|}(1-x)^{n-|A|}$$ is strictly increasing for $x \in (0,1)$.
2018 USA TSTST, 6
Let $S = \left\{ 1, \dots, 100 \right\}$, and for every positive integer $n$ define \[ T_n = \left\{ (a_1, \dots, a_n) \in S^n \mid a_1 + \dots + a_n \equiv 0 \pmod{100} \right\}. \] Determine which $n$ have the following property: if we color any $75$ elements of $S$ red, then at least half of the $n$-tuples in $T_n$ have an even number of coordinates with red elements.
[i]Ray Li[/i]
2013 Denmark MO - Mohr Contest, 1
The figure shows a game board with $16$ squares. At the start of the game, two cars are placed in different squares. Two players $A$ and $B$ alternately take turns, and A starts. In each turn, the player chooses one of the cars and moves it one or more squares to the right. The left-most car may never overtake or land on the same square as the right-most car. The first player which is unable to move loses.
[img]https://cdn.artofproblemsolving.com/attachments/1/b/8d6f40fac4983d6aa9bd076392c91a6d200f6a.png[/img]
(a) Prove that A can win regardless of how $B$ plays, if the two cars start as shown in the figure.
(b) Determine all starting positions in which $B$ can win regardless of how $A$ plays.
2019 USA TSTST, 3
On an infinite square grid we place finitely many [i]cars[/i], which each occupy a single cell and face in one of the four cardinal directions. Cars may never occupy the same cell. It is given that the cell immediately in front of each car is empty, and moreover no two cars face towards each other (no right-facing car is to the left of a left-facing car within a row, etc.). In a [i]move[/i], one chooses a car and shifts it one cell forward to a vacant cell. Prove that there exists an infinite sequence of valid moves using each car infinitely many times.
[i]Nikolai Beluhov[/i]
2015 Romania Masters in Mathematics, 2
For an integer $n \geq 5,$ two players play the following game on a regular $n$-gon. Initially, three consecutive vertices are chosen, and one counter is placed on each. A move consists of one player sliding one counter along any number of edges to another vertex of the $n$-gon without jumping over another counter. A move is legal if the area of the triangle formed by the counters is strictly greater after the move than before. The players take turns to make legal moves, and if a player cannot make a legal move, that player loses. For which values of $n$ does the player making the first move have a winning strategy?
2005 Turkey Team Selection Test, 3
Initially the numbers 1 through 2005 are marked. A finite set of marked consecutive integers is called a block if it is not contained in any larger set of marked consecutive integers. In each step we select a set of marked integers which does not contain the first or last element of any block, unmark the selected integers, and mark the same number of consecutive integers starting with the integer two greater than the largest marked integer. What is the minimum number of steps necessary to obtain 2005 single integer blocks?
Mid-Michigan MO, Grades 5-6, 2023
[b]p1.[/b] Solve: $INK + INK + INK + INK + INK + INK = PEN$
($INK$ and $PEN$ are $3$-digit numbers, and different letters stand for different digits).
[b]p2. [/b]Two people play a game. They put $3$ piles of matches on the table:
the first one contains $1$ match, the second one $3$ matches, and the third one $4$ matches. Then they take turns making moves. In a move, a player may take any nonzero number of matches FROM ONE PILE. The player who takes the last match from the table loses the game.
a) The player who makes the first move can win the game. What is the winning first move?
b) How can he win? (Describe his strategy.)
[b]p3.[/b] The planet Naboo is under attack by the imperial forces. Three rebellion camps are located at the vertices of a triangle. The roads connecting the camps are along the sides of the triangle. The length of the first road is less than or equal to $20$ miles, the length of the second road is less than or equal to $30$ miles, and the length of the third road is less than or equal to $45$ miles. The Rebels have to cover the area of this triangle with a defensive field. What is the maximal area that they may need to cover?
[b]p4.[/b] Money in Wonderland comes in $\$5$ and $\$7$ bills. What is the smallest amount of money you need to buy a slice of pizza that costs $\$ 1$ and get back your change in full? (The pizza man has plenty of $\$5$ and $\$7$ bills.) For example, having $\$7$ won't do, since the pizza man can only give you $\$5$ back.
[b]p5.[/b] (a) Put $5$ points on the plane so that each $3$ of them are vertices of an isosceles triangle (i.e., a triangle with two equal sides), and no three points lie on the same line.
(b) Do the same with $6$ points.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1976 Yugoslav Team Selection Test, Problem 2
Assume that $2n+1$ positive integers satisfy the following: If we remove any of these integers, the remaining $2n$ integers can be partitioned in two groups of $n$ numbers in each, such that the sum of the numbers in one group is equal to the sum of the numbers in the other. Prove that all of these numbers must be equal.
2018 Romanian Master of Mathematics Shortlist, C3
$N$ teams take part in a league. Every team plays every other team exactly once during the league, and receives 2 points for each win, 1 point for each draw, and 0 points for each loss. At the end of the league, the sequence of total points in descending order $\mathcal{A} = (a_1 \ge a_2 \ge \cdots \ge a_N )$ is known, as well as which team obtained which score. Find the number of sequences $\mathcal{A}$ such that the outcome of all matches is uniquely determined by this information.
[I]Proposed by Dominic Yeo, United Kingdom.[/i]
1987 IMO Longlists, 48
Find the number of partitions of the set $\{1, 2, \cdots, n\}$ into three subsets $A_1,A_2,A_3$, some of which may be empty, such that the following conditions are satisfied:
$(i)$ After the elements of every subset have been put in ascending order, every two consecutive elements of any subset have different parity.
$(ii)$ If $A_1,A_2,A_3$ are all nonempty, then in exactly one of them the minimal number is even .
[i]Proposed by Poland.[/i]
2019 Belarusian National Olympiad, 11.3
The sum of several (not necessarily different) real numbers from $[0,1]$ doesn't exceed $S$.
Find the maximum value of $S$ such that it is always possible to partition these numbers into two groups with sums $A\le 8$ and $B\le 4$.
[i](I. Gorodnin)[/i]
LMT Team Rounds 2021+, B5
Find the number of ways there are to permute the elements of the set $\{1,2,3,4,5,6,7,8,9\}$ such that no two adjacent numbers are both even or both odd.
[i]Proposed by Ephram Chun[/i]
1998 Estonia National Olympiad, 5
The paper is marked with the finite number of blue and red dots and some these points are connected by lines. Let's name a point $P$ [i]special [/i] if more than half of the points connected with $P$ has a color other than point $P$. Juku selects one special point and reverses its color. Then Juku selects a new special point and changes its color, etc. Prove that by a finite number of integers Juku ends up in a situation where the paper has not made a special point.
2000 Belarus Team Selection Test, 8.3
Prove that the set of positive integers cannot be partitioned into three nonempty subsets such that, for any two integers $x,y$ taken from two different subsets, the number $x^2-xy+y^2$ belongs to the third subset.
2019 Saudi Arabia Pre-TST + Training Tests, 3.3
All of the numbers $1, 2,3,...,1000000$ are initially colored black. On each move it is possible to choose the number $x$ (among the colored numbers) and change the color of $x$ and of all of the numbers that are not co-prime with $x$ (black into white, white into black). Is it possible to color all of the numbers white?
2007 Indonesia Juniors, day 1
p1. A set of cards contains $100$ cards, each of which is written with a number from $1$ up to $100$. On each of the two sides of the card the same number is written, side one is red and the other is green. First of all Leny arranges all the cards with red writing face up. Then Leny did the following three steps:
I. Turn over all cards whose numbers are divisible by $2$
II. Turn over all the cards whose numbers are divisible by $3$
III. Turning over all the cards whose numbers are divisible by $5$, but didn't turn over all cards whose numbers are divisible by $5$ and $2$.
Find the number of Leny cards now numbered in red and face up,
p2. Find the area of three intersecting semicircles as shown in the following image.
[img]https://cdn.artofproblemsolving.com/attachments/f/b/470c4d2b84435843975a0664fad5fee4a088d5.png[/img]
p3. It is known that $x+\frac{1}{x}=7$ . Determine the value of $A$ so that $\frac{Ax}{x^4+x^2+1}=\frac56$.
p4. There are $13$ different gifts that will all be distributed to Ami, Ima, Mai,and Mia. If Ami gets at least $4$ gifts, Ima and Mai respectively got at least $3$ gifts, and Mia got at least $2$ gifts, how many possible gift arrangements are there?
p5. A natural number is called a [i]quaprimal [/i] number if it satisfies all four following conditions:
i. Does not contain zeros.
ii. The digits compiling the number are different.
iii. The first number and the last number are prime numbers or squares of an integer.
iv. Each pair of consecutive numbers forms a prime number or square of an integer.
For example, we check the number $971643$.
(i) $971643$ does not contain zeros.
(ii) The digits who compile $971643$ are different.
(iii) One first number and one last number of $971643$, namely $9$ and $3$ is a prime number or a square of an integer.
(iv) Each pair of consecutive numbers, namely $97, 71, 16, 64$, and $43$ form prime number or square of an integer.
So $971643$ is a quadratic number.
Find the largest $6$-digit quaprimal number.
Find the smallest $6$-digit quaprimal number.
Which digit is never contained in any arbitrary quaprimal number? Explain.
2020 HK IMO Preliminary Selection Contest, 18
Two $n$-sided polygons are said to be of the same type if we can label their vertices in clockwise order as $A_1$, $A_2$, ..., $A_n$ and $B_1$, $B_2$, ..., $B_n$ respectively such that each pair of interior angles $A_i$ and $B_i$ are either both reflex angles or both non-reflex angles. How many different types of $11$-sided polygons are there?
2023 Azerbaijan Senior NMO, 4
To open the magic chest, one needs to say a magic code of length $n$ consisting of digits $0, 1, 2, 3, 4, 5, 6, 7, 8, 9.$ Each time Griphook tells the chest a code it thinks up, the chest's talkative guardian responds by saying the number of digits in that code that match the magic code. (For example, if the magic code is $0423$ and Griphook says $3442,$ the chest's talkative guard will say $1$). Prove that there exists a number $k$ such that for any natural number $n \geq k,$ Griphook can find the magic code by checking at most $4n-2023$ times, regardless of what the magic code of the box is.
2005 Czech And Slovak Olympiad III A, 6
Decide whether for every arrangement of the numbers $1,2,3, . . . ,15$ in a sequence one can color these numbers with at most four different colors in such a way that the numbers of each color form a monotone subsequence.
2021 Brazil National Olympiad, 2
Let \(n\) be a positive integer. On a \(2 \times 3 n\) board, we mark some squares, so that any square (marked or not) is adjacent to at most two other distinct marked squares (two squares are adjacent when they are distinct and have at least one vertex in common, i.e. they are horizontal, vertical or diagonal neighbors; a square is not adjacent to itself).
(a) What is the greatest possible number of marked square?
(b) For this maximum number, in how many ways can we mark the squares? configurations that can be achieved through rotation or reflection are considered distinct.
2000 France Team Selection Test, 1
Some squares of a $1999\times 1999$ board are occupied with pawns. Find the smallest number of pawns for which it is possible that for each empty square, the total number of pawns in the row or column of that square is at least $1999$.
2005 IMO Shortlist, 4
Let $n\geq 3$ be a fixed integer. Each side and each diagonal of a regular $n$-gon is labelled with a number from the set $\left\{1;\;2;\;...;\;r\right\}$ in a way such that the following two conditions are fulfilled:
[b]1.[/b] Each number from the set $\left\{1;\;2;\;...;\;r\right\}$ occurs at least once as a label.
[b]2.[/b] In each triangle formed by three vertices of the $n$-gon, two of the sides are labelled with the same number, and this number is greater than the label of the third side.
[b](a)[/b] Find the maximal $r$ for which such a labelling is possible.
[b](b)[/b] [i]Harder version (IMO Shortlist 2005):[/i] For this maximal value of $r$, how many such labellings are there?
[hide="Easier version (5th German TST 2006) - contains answer to the harder version"]
[i]Easier version (5th German TST 2006):[/i] Show that, for this maximal value of $r$, there are exactly $\frac{n!\left(n-1\right)!}{2^{n-1}}$ possible labellings.[/hide]
[i]Proposed by Federico Ardila, Colombia[/i]