This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2004 Indonesia Juniors, day 2

p1. A regular $6$-face dice is thrown three times. Calculate the probability that the number of dice points on all three throws is $ 12$? p2. Given two positive real numbers $x$ and $y$ with $xy = 1$. Determine the minimum value of $\frac{1}{x^4}+\frac{1}{4y^4}.$ p3. Known a square network which is continuous and arranged in forming corners as in the following picture. Determine the value of the angle marked with the letter $x$. [img]https://cdn.artofproblemsolving.com/attachments/6/3/aee36501b00c4aaeacd398f184574bd66ac899.png[/img] p4. Find the smallest natural number $n$ such that the sum of the measures of the angles of the $n$-gon, with $n > 6$ is less than $n^2$ degrees. p5. There are a few magic cards. By stating on which card a number is there, without looking at the card at all, someone can precisely guess the number. If the number is on Card $A$ and $B$, then the number in question is $1 + 2$ (sum of corner number top left) cards $A$ and $B$. If the numbers are in $A$, $B$, and $C$, the number what is meant is $1 + 2 + 4$ or equal to $7$ (which is obtained by adding the numbers in the upper left corner of each card $A$,$B$, and $C$). [img]https://cdn.artofproblemsolving.com/attachments/e/5/9e80d4f3bba36a999c819c28c417792fbeff18.png[/img] a. How can this be explained? b. Suppose we are going to make cards containing numbers from $1$ to with $15$ based on the rules above. Try making the cards. [hide=original wording for p5, as the wording isn't that clear]Ada suatu kartu ajaib. Dengan menyebutkan di kartu yang mana suatu bilan gan berada, tanpa melihat kartu sama sekali, seseorang dengan tepat bisa menebak bilangan yang dimaksud. Kalau bilangan tersebut ada pada Kartu A dan B, maka bilangan yang dimaksud adalah 1 + 2 (jumlah bilangan pojok kiri atas) kartu A dan B. Kalau bilangan tersebut ada di A, B, dan C, bilangan yang dimaksud adalah 1 + 2 + 4 atau sama dengan 7 (yang diperoleh dengan menambahkan bilangan-bilangan di pojok kiri atas masing-masing kartu A, B, dan C) a. Bagaimana hal ini bisa dijelaskan? b. Andai kita akan membuat kartu-kartu yang memuat bilangan dari 1 sampai dengan 15 berdasarkan aturan di atas. Coba buatkan kartu-kartunya[/hide]

2006 ITAMO, 1

Two people play the following game: there are $40$ cards numbered from $1$ to $10$ with $4$ different signs. At the beginning they are given $20$ cards each. Each turn one player either puts a card on the table or removes some cards from the table, whose sum is $15$. At the end of the game, one player has a $5$ and a $3$ in his hand, on the table there's a $9$, the other player has a card in his hand. What is it's value?

2014 Baltic Way, 10

In a country there are $100$ airports. Super-Air operates direct flights between some pairs of airports (in both directions). The [i]traffic[/i] of an airport is the number of airports it has a direct Super-Air connection with. A new company, Concur-Air, establishes a direct flight between two airports if and only if the sum of their traffics is at least $100.$ It turns out that there exists a round-trip of Concur-Air flights that lands in every airport exactly once. Show that then there also exists a round-trip of Super-Air flights that lands in every airport exactly once.

2004 Brazil Team Selection Test, Problem 3

Prove that there exists a family $\mathfrak F=\{A_1,A_2,\ldots,A_r\}$ of $m$-element subsets of a given set $\{b_1,b_2,\ldots,b_n\}$ of $n$ elements such that (i) $\left|A_i\cap A_j\right|\le m-2$ for all $A_i,A_j\in\mathfrak F$ with $i\ne j$, and (ii) $r\ge\left\lfloor\frac1n\binom nm\right\rfloor$

1978 Germany Team Selection Test, 1

Let $E$ be a set of $n$ points in the plane $(n \geq 3)$ whose coordinates are integers such that any three points from $E$ are vertices of a nondegenerate triangle whose centroid doesnt have both coordinates integers. Determine the maximal $n.$

LMT Guts Rounds, 2019 S

[u]Round 1[/u] [b]p1.[/b] Alice has a pizza with eight slices. On each slice, she either adds only salt, only pepper, or leaves it plain. Determine how many ways there are for Alice to season her entire pizza. [b]p2.[/b] Call a number almost prime if it has exactly three divisors. Find the number of almost prime numbers less than $100$. [b]p3.[/b] Determine the maximum number of points of intersection between a circle and a regular pentagon. [u]Round 2[/u] [b]p4.[/b] Let $d(n)$ denote the number of positive integer divisors of $n$. Find $d(d(20^{18}))$. [b]p5.[/b] $20$ chubbles are equal to $19$ flubbles. $20$ flubbles are equal to $18$ bubbles. How many bubbles are $1000$ chubbles worth? [b]p6.[/b] Square $ABCD$ and equilateral triangle $EFG$ have equal area. Compute $\frac{AB}{EF}$ . [u]Round 3[/u] [b]p7.[/b] Find the minimumvalue of $y$ such that $y = x^2 -6x -9$ where x is a real number. [b]p8.[/b] I have $2$ pairs of red socks, $5$ pairs of white socks, and $7$ pairs of blue socks. If I randomly pull out one sock at a time without replacement, how many socks do I need to draw to guarantee that I have drawn $3$ pairs of socks of the same color? [b]p9. [/b]There are $23$ paths from my house to the school, $29$ paths from the school to the library, and $3$ paths fromthe library to town center. Additionally, there are $6$ paths directly from my house to the library. If I have to pass through the library to get to town center, howmany ways are there to travel from my house all the way to the town center? [u]Round 4[/u] [b]p10.[/b] A circle of radius $25$ and a circle of radius $4$ are externally tangent. A line is tangent to the circle of radius $25$ at $A$ and the circle of radius $4$ at $B$, where $A \ne B$. Compute the length of $AB$. [b]p11.[/b] A gambler spins two wheels, one numbered $1$ to $4$ and another numbered $1$ to $5$, and the amount of money he wins is the sum of the two numbers he spins in dollars. Determine the expected amount of money he will win. [b]p12.[/b] Find the remainder when $20^{19}$ is divided by $18$. PS. You should use hide for answers. Rounds 5-8 have been posted [url=https://artofproblemsolving.com/community/c3h3166012p28809547]here [/url] and 9-12 [url=https://artofproblemsolving.com/community/c3h3166099p28810427]here[/url].Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1984 Tournament Of Towns, (078) 3

We are given a regular decagon with all diagonals drawn. The number "$+ 1$ " is attached to each vertex and to each point where diagonals intersect (we consider only internal points of intersection). We can decide at any time to simultaneously change the sign of all such numbers along a given side or a given diagonal . Is it possible after a certain number of such operations to have changed all the signs to negative?

2016 Israel National Olympiad, 4

In the beginning, there is a circle with three points on it. The points are colored (clockwise): Green, blue, red. Jonathan may perform the following actions, as many times as he wants, in any order: [list] [*] Choose two adjacent points with [u]different[/u] colors, and add a point between them with one of the two colors only. [*] Choose two adjacent points with [u]the same[/u] color, and add a point between them with any of the three colors. [*] Choose three adjacent points, at least two of them having the same color, and delete the middle point. [/list] Can Jonathan reach a state where only three points remain on the circle, colored (clockwise): Blue, green, red?

MathLinks Contest 4th, 4.3

Given is a graph $G$. An [i]empty [/i] subgraph of $G$ is a subgraph of $G$ with no edges between its vertices. An edge of $G$ is called [i]important [/i] if and only if the removal of this edge will increase the size of the maximal empty subgraph. Suppose that two important edges in $G$ have a common endpoint. Prove there exists a cycle of odd length in $G$.

2001 Mongolian Mathematical Olympiad, Problem 4

On a line are given $n>3$ points. Find the number of colorings of these points in red and blue, such that in any set of consequent points the difference between the numbers of red and blue points does not exceed $2$.

1990 Mexico National Olympiad, 1

Tags: combinatorics , grid , path
How many paths are there from$ A$ to the line $BC$ if the path does not go through any vertex twice and always moves to the left? [img]https://cdn.artofproblemsolving.com/attachments/e/6/a4bc3a9decc06eaeed6f7e99cb58f7b2524471.jpg[/img]

2019 Girls in Mathematics Tournament, 4

A positive integer $n$ is called [i]cute[/i] when there is a positive integer $m$ such that $m!$ ends in exactly $n$ zeros. a) Determine if $2019$ is cute. b) How many positive integers less than $2019$ are cute?

2018 CHMMC (Fall), Individual

[b]p1.[/b] Two robots race on the plane from $(0, 0)$ to $(a, b)$, where $a$ and $b$ are positive real numbers with $a < b$. The robots move at the same constant speed. However, the first robot can only travel in directions parallel to the lines $x = 0$ or $y = 0$, while the second robot can only travel in directions parallel to the lines $y = x$ or $y = -x$. Both robots take the shortest possible path to $(a, b)$ and arrive at the same time. Find the ratio $\frac{a}{b}$ . [b]p2.[/b] Suppose $x + \frac{1}{x} + y + \frac{1}{y} = 12$ and $x^2 + \frac{1}{x^2} + y^2 + \frac{1}{y^2} = 70$. Compute $x^3 + \frac{1}{x^3} + y^3 + \frac{1}{y^3}$. [b]p3.[/b] Find the largest non-negative integer $a$ such that $2^a$ divides $$3^{2^{2018}}+ 3.$$ [b]p4.[/b] Suppose $z$ and $w$ are complex numbers, and $|z| = |w| = z \overline{w}+\overline{z}w = 1$. Find the largest possible value of $Re(z + w)$, the real part of $z + w$. [b]p5.[/b] Two people, $A$ and $B$, are playing a game with three piles of matches. In this game, a move consists of a player taking a positive number of matches from one of the three piles such that the number remaining in the pile is equal to the nonnegative difference of the numbers of matches in the other two piles. $A$ and $B$ each take turns making moves, with $A$ making the first move. The last player able to make a move wins. Suppose that the three piles have $10$, $x$, and $30$ matches. Find the largest value of $x$ for which $A$ does not have a winning strategy. [b]p6.[/b] Let $A_1A_2A_3A_4A_5A_6$ be a regular hexagon with side length $1$. For $n = 1$,$...$, $6$, let $B_n$ be a point on the segment $A_nA_{n+1}$ chosen at random (where indices are taken mod $6$, so $A_7 = A_1$). Find the expected area of the hexagon $B_1B_2B_3B_4B_5B_6$. [b]p7.[/b] A termite sits at the point $(0, 0, 0)$, at the center of the octahedron $|x| + |y| + |z| \le 5$. The termite can only move a unit distance in either direction parallel to one of the $x$, $y$, or $z$ axes: each step it takes moves it to an adjacent lattice point. How many distinct paths, consisting of $5$ steps, can the termite use to reach the surface of the octahedron? [b]p8.[/b] Let $$P(x) = x^{4037} - 3 - 8 \cdot \sum^{2018}_{n=1}3^{n-1}x^n$$ Find the number of roots $z$ of $P(x)$ with $|z| > 1$, counting multiplicity. [b]p9.[/b] How many times does $01101$ appear as a not necessarily contiguous substring of $0101010101010101$? (Stated another way, how many ways can we choose digits from the second string, such that when read in order, these digits read $01101$?) [b]p10.[/b] A perfect number is a positive integer that is equal to the sum of its proper positive divisors, that is, the sum of its positive divisors excluding the number itself. For example, $28$ is a perfect number because $1 + 2 + 4 + 7 + 14 = 28$. Let $n_i$ denote the ith smallest perfect number. Define $$f(x) =\sum_{i|n_x}\sum_{j|n_i}\frac{1}{j}$$ (where $\sum_{i|n_x}$ means we sum over all positive integers $i$ that are divisors of $n_x$). Compute $f(2)$, given there are at least $50 $perfect numbers. [b]p11.[/b] Let $O$ be a circle with chord $AB$. The perpendicular bisector to $AB$ is drawn, intersecting $O$ at points $C$ and $D$, and intersecting $AB$ at the midpoint $E$. Finally, a circle $O'$ with diameter $ED$ is drawn, and intersects the chord $AD$ at the point $F$. Given $EC = 12$, and $EF = 7$, compute the radius of $O$. [b]p12.[/b] Suppose $r$, $s$, $t$ are the roots of the polynomial $x^3 - 2x + 3$. Find $$\frac{1}{r^3 - 2}+\frac{1}{s^3 - 2}+\frac{1}{t^3 - 2}.$$ [b]p13.[/b] Let $a_1$, $a_2$,..., $a_{14}$ be points chosen independently at random from the interval $[0, 1]$. For $k = 1$, $2$,$...$, $7$, let $I_k$ be the closed interval lying between $a_{2k-1}$ and $a_{2k}$ (from the smaller to the larger). What is the probability that the intersection of $I_1$, $I_2$,$...$, $I_7$ is nonempty? [b]p14.[/b] Consider all triangles $\vartriangle ABC$ with area $144\sqrt3$ such that $$\frac{\sin A \sin B \sin C}{ \sin A + \sin B + \sin C}=\frac14.$$ Over all such triangles $ABC$, what is the smallest possible perimeter? [b]p15.[/b] Let $N$ be the number of sequences $(x_1,x_2,..., x_{2018})$ of elements of $\{1, 2,..., 2019\}$, not necessarily distinct, such that $x_1 + x_2 + ...+ x_{2018}$ is divisible by $2018$. Find the last three digits of $N$. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2024 Bulgarian Spring Mathematical Competition, 11.4

Given is a convex $2024$-gon $A_1A_2\ldots A_{2024}$ and $1000$ points inside it, so that no three points are collinear. Some pairs of the points are connected with segments so that the interior of the polygon is divided into triangles. Every point is assigned one number among $\{1, -1, 2, - 2\}$, so that the sum of the numbers written in $A_i$ and $A_{i+1012}$ is zero for all $i=1,2, \ldots, 1012$. Prove that there is a triangle, such that the sum of the numbers in some two of its vertices is zero. [hide=Remark on source of 11.3] It appears as Estonia TST 2004/5, so it will not be posted.

2010 Puerto Rico Team Selection Test, 1

Maria and Luis play the following game: Maria throws three dice and Luis can select some of them (possibly none) and turn them changing their value for the value in the opposite face of each selected die. Prove that Luis can always play in such a way that the sum of the upper faces of the dice after the change is a multiple of $4$. Note: The game is played with normal dice, that is, the sum of opposite faces is $7$.

2020 Moldova Team Selection Test, 12

In a chess tournament each player played one match with every other player. It is known that all players have different scores. The player who is on the last place got $k$ points. What is the smallest number of wins that the first placed player got? (For the win $1$ point is given, for loss $0$ and for a draw both players get $0,5$ points.)

2022 Mid-Michigan MO, 5-6

[b]p1.[/b] An animal farm has geese and pigs with a total of $30$ heads and $84$ legs. Find the number of pigs and geese on this farm. [b]p2.[/b] What is the maximum number of $1 \times 1$ squares of a $7 \times 7$ board that can be colored black in such a way that the black squares don’t touch each other even at their corners? Show your answer on the figure below and explain why it is not possible to get more black squares satisfying the given conditions. [img]https://cdn.artofproblemsolving.com/attachments/d/5/2a0528428f4a5811565b94061486699df0577c.png[/img] [b]p3.[/b] Decide whether it is possible to divide a regular hexagon into three equal not necessarily regular hexagons? A regular hexagon is a hexagon with equal sides and equal angles. [img]https://cdn.artofproblemsolving.com/attachments/3/7/5d941b599a90e13a2e8ada635e1f1f3f234703.png[/img] [b]p4.[/b] A rectangle is subdivided into a number of smaller rectangles. One observes that perimeters of all smaller rectangles are whole numbers. Is it possible that the perimeter of the original rectangle is not a whole number? [b]p5.[/b] Place parentheses on the left hand side of the following equality to make it correct. $$ 4 \times 12 + 18 : 6 + 3 = 50$$ [b]p6.[/b] Is it possible to cut a $16\times 9$ rectangle into two equal parts which can be assembled into a square? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2020 Denmark MO - Mohr Contest, 5

Alma places spies on some of the squares on a $2020\times 2020$ game board. Now Bertha secretly chooses a quadradic area consisting of $1020 \times 1020$ squares and tells Alma which spies are standing on a square in the secret quadradic area. At least how many spies must Alma have placed in order for her to determine with certainty which area Bertha has chosen?

1999 All-Russian Olympiad Regional Round, 10.8

Some natural numbers are marked. It is known that on every a segment of the number line of length $1999$ has a marked number. Prove that there is a pair of marked numbers, one of which is divisible by the other.

2022 Israel TST, 1

Bilbo, Gandalf, and Nitzan play the following game. First, Nitzan picks a whole number between $1$ and $2^{2022}$ inclusive and reveals it to Bilbo. Bilbo now compiles a string of length $4044$ built from the three letters $a,b,c$. Nitzan looks at the string, chooses one of the three letters $a,b,c$, and removes from the string all instances of the chosen letter. Only then is the string revealed to Gandalf. He must now guess the number Nitzan chose. Can Bilbo and Gandalf work together and come up with a strategy beforehand that will always allow Gandalf to guess Nitzan's number correctly, no matter how he acts?

2017 BMO TST, 1

Given $n$ numbers different from $0$, ($n \in \mathbb{N}$) which are arranged randomly. We do the following operation: Choose some consecutive numbers in the given order and change their sign (i.e. $x \rightarrow -x$). What is the minimum number of operations needed, in order to make all the numbers positive for any given initial configuration of the $n$ numbers?

1965 All Russian Mathematical Olympiad, 066

The tourist has come to the Moscow by train. All-day-long he wandered randomly through the streets. Than he had a supper in the cafe on the square and decided to return to the station only through the streets that he has passed an odd number of times. Prove that he is always able to do that.

2024 Brazil Team Selection Test, 5

Let $n\geqslant 2$ be a positive integer. Paul has a $1\times n^2$ rectangular strip consisting of $n^2$ unit squares, where the $i^{\text{th}}$ square is labelled with $i$ for all $1\leqslant i\leqslant n^2$. He wishes to cut the strip into several pieces, where each piece consists of a number of consecutive unit squares, and then [i]translate[/i] (without rotating or flipping) the pieces to obtain an $n\times n$ square satisfying the following property: if the unit square in the $i^{\text{th}}$ row and $j^{\text{th}}$ column is labelled with $a_{ij}$, then $a_{ij}-(i+j-1)$ is divisible by $n$. Determine the smallest number of pieces Paul needs to make in order to accomplish this.

2019 HMIC, 4

A [i]cactus[/i] is a finite simple connected graph where no two cycles share an edge. Show that in a nonempty cactus, there must exist a vertex which is part of at most one cycle. [i]Kevin Yang[/i]

2009 Italy TST, 3

Two persons, A and B, set up an incantation contest in which they spell incantations (i.e. a finite sequence of letters) alternately. They must obey the following rules: i) Any incantation can appear no more than once; ii) Except for the first incantation, any incantation must be obtained by permuting the letters of the last one before it, or deleting one letter from the last incantation before it; iii)The first person who cannot spell an incantation loses the contest. Answer the following questions: a) If A says '$STAGEPREIMO$' first, then who will win? b) Let $M$ be the set of all possible incantations whose lengths (i.e. the numbers of letters in them) are $2009$ and containing only four letters $A,B,C,D$, each of them appearing at least once. Find the first incantation (arranged in dictionary order) in $M$ such that A has a winning strategy by starting with it.